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Abstract

In quantum optics, the standard approach for measuring and calculating frequency-filtered
photon correlations is to filter the source field of interest with a Lorentzian-type filter, e.g.,
a tunable single-mode cavity or detector atom. However, given the inverse relation between
a filter’s bandwidth and temporal response, there is trade-off between the frequency isolation
and temporal response of the filter. A broad bandwidth results in a faster temporal response
with more accurately measured photon correlations, yet the slow decaying tails of a Lorentzian
distribution can allow for non-target frequency photons to pass through the filter. Conversely,
a narrow filter bandwidth results in more effective frequency isolation, yet a slow temporal
response, potentially changing the nature of the emitted photon correlations.

The aim of this work is to develop a theoretical filtering technique that is simple to implement
and offers an effective method of calculating frequency-filtered photon correlations. We model
our filter as a multi-mode array filter, which consists of an array of tunable single-mode cavities
that are equally spaced in frequency. By introducing a mode-dependent phase modulation, we
produce a near rectangular frequency response, allowing us to increase the filter bandwidth –
and thus the temporal response – without sacrificing frequency isolation. To ensure the filter
has no effect on the evolution of the source system, we couple the source system using a cascaded
quantum open systems approach. The complete lack of back-action of the filter onto the source
system allows us to derive a closed set of operator moment equations for source and filter system
operators. This provides an extremely effective and computationally efficient way to calculate
frequency-filtered first- and second-order correlation functions. By coupling the target field
into two multi-mode array filters, we can set the resonance of the two filters to two different
transitions, and thus calculate frequency-filtered cross-correlation functions.

We demonstrate this novel filtering method by applying it to two different driven quantum
systems: a resonantly driven two-level atom and a three-level ladder-type atom driven at two-
photon resonance. We present results of frequency-filtered power spectrum to demonstrate
the improved frequency isolation of the multi-mode array filter over the single-mode filter.
We then present results for the single-mode and multi-mode array filtered second-order auto-
and cross-correlation functions. These are compared against expressions derived in the secular
approximation. The improved frequency isolation of the multi-mode array filter allows us to
investigate new areas of frequency-filtered photon correlations, such as two-photon leapfrog
processes, and the effect of vanishing bandwidth on filtered auto-correlation functions.
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1 Introduction

Resonance fluorescence – the scattering of light resonant with an atomic system – of a
two-level atom is one of the simplest examples of light interacting with matter, yet it is a
key concept in quantum optics. It was found, both theoretically and experimentally, that
upon strong coherent excitation, the power spectrum of the two-level atom splits into three
components to yield the structure known as the “Mollow triplet” [1–3]. It was then discovered
that this splitting phenomenon is due to transitions amongst the atom’s “dressed states”; a
direct result of the atom interacting with a strong quantised electromagnetic field [4, 5]. This
work, so early on in the field of quantum optics, led to a renewed interest in the details of
interactions between light and atomic systems [6].

Around the same time that Mollow’s papers were originally published, there were also in-
vestigations into the quantum nature of the emitted light; of particular interest were photon
correlations. Photon correlations have long been studied in classical optics; the definitions of
coherence and bunched light – where photons are emitted in packets, or “bunches” – originated
from a classical description of light. It was in 1963, however, when Glauber first developed
a purely quantum mechanical description of these correlation functions [7, 8]. In 1976, Walls
and Carmichael showed that the two-level atom exhibited a purely quantum effect, namely
antibunching [9–11], with the first experimental observation occurring the following year [12].

In 1977, Eberly and Wódkiewicz formulated a new description of spectra, which they define
as a “time dependent physical spectrum of light based on the counting rate of a photodetector”
[13]. While this work was set out to solve the discrepancies between power spectra and actual
physical measurements, it helped lay the foundation of using Fabry-Pérot interferometers as
frequency filters [14–20].

The majority of studies on atomic fluorescence around this time were largely focused on the
entire fluorescence spectrum of the atom. It was at the end of the 1970s when Apanasevich
and Kilin published one of the first investigations into correlating photons from individual
components of the total fluorescence field [21–23]. Soon after, in 1980, Aspect, Roger, Dalibard,
and Cohen-Tannoudji reported the first experimental investigation into the photon correlations
between photons of the sidebands of the Mollow triplet [24]. They achieved the separation of
the two frequency components by splitting the fluorescence into two channels, with each passing
through an interference filter tuned to the target wavelength. More research soon followed, and
it remains a topic of interest to this day [25–38], thanks, in part, to new capabilities offered by
the advent of circuit QED technology.

With a surge of interest in measuring photon correlations from components of the fluores-
cence spectrum came an interest in the effect of frequency filtering [39–42], as well as other
methods of calculating and measuring frequency-filtered photon correlations. It was in 2012
that del Valle et al. published their paper “Theory of frequency-filtered and time-resolved N -
photon correlations” [43, 44]. Their proposed method consisted of weakly coupling the output
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field of a system of interest into N detector atoms, where N is the order of the correlation
function of interest. This proved to be an astonishingly simple method to implement, and has
been used extensively, in both theoretical and experimental works [45–51]. Other methods have
also been discussed over the years, with more of a theoretical leaning, such as: frequency re-
solved Monte-Carlo, or quantum trajectory methods [52–54]; perturbation approaches [55]; and
signal processing methods [56]. Kamide et al. also developed a method based on the eigenvalue
decomposition of the Liouvillian superoperators [57, 58]. This theoretically intense method
allowed them to model not only Lorentzian filters, but also Gaussian and rectangular filters.

While there is no perfect method of frequency filtering to cover all applications, there are
issues with the previous methods. The most common type of frequency filter, and perhaps the
easiest in both theoretical and experimental applications, is the tunable interferometer; it can
be modelled with relative ease as a single-mode cavity. The most prominent downside to this
method is that the natural frequency response of a single-mode cavity is Lorentzian shaped.
Why is this limiting? The tails of a Lorentzian distribution extend quite far from the centre
and, in fact, never decay entirely. For multi-frequency source systems, such as a strongly driven
two-level atom exhibiting the Mollow triplet, the tails of the frequency response can intersect
with non-target frequencies. The width of the Lorentzian distribution, i.e., the bandwidth of
the filter cavity, is inversely proportional to the temporal response of the filter. Therefore, a
trade-off is required between the temporal response and the frequency isolation of the filter.

We therefore arrive at the aim of this thesis: to develop an improved method of frequency fil-
tering and calculating frequency-filtered photon correlations. We require this improved method
to be cavity based, such that it could be achieved in a laboratory, and for it to have a more
effective frequency response for multi-frequency sources. An ideal filter, in this case, would be a
rectangular filter, which can be achieved with the eigenvalue decomposition method of Kamide
et al. [57]. This method, however, is entirely mathematical, and cannot be achieved physically.

We also require that the filter model has no effect on the evolution of the source system.
The method of del Valle et al. [43] achieves this by assuming a vanishingly small coupling of the
source system to the detector atoms, such that any back-action can be neglected. Holdaway et
al. [55] take this approach a step further with an algebraic expansion of the source-filter coupled
system with respect to the coupling parameter. We can, in fact, ensure there is no back-action
by cascading the output of the source system as the input for the filter system, using open
cascaded systems theory [59, 60], which has been employed in just a few recent works [61, 62].

The novel method we will introduce in this thesis is the multi-mode array filter. This filter
model consists of an array of tunable, single-mode cavities; the output field of a source system
is cascaded equally into each mode, where a mode-dependent phase modulation is applied. The
output of each individual mode is then combined, creating an interference that results in an
approximately rectangular frequency response.

A further, uncommon approach that we will use for determining filtered photon correlations
is by calculating the expectation value of the detection operators. Usually, second-order corre-
lation functions can be calculated via the Lindblad master equation, along with the quantum
regression equations formulated by Lax [63, 64]. By solving for the operator averages, or mo-
ment equations, of a filter system’s source operators – such as the photon annihilation operator
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– these correlation functions can be solved much more efficiently and accurately. By modelling
the filtering process as a cascaded quantum system, thus ensuring there is no back-action of the
filter on the source system, the evolution of the source system generates all of the dynamics of
the source-filter coupled system. As we will see, this provides a simple and effective method for
calculating frequency-filtered correlation functions.

Outline of the Thesis

This thesis is split into two parts: Part I Quantum Optics and Filtering, and Part II Reso-
nance Fluorescence.

In Part I, we set out the important background theory for the entire thesis. We begin
in Chapter 2 with a general summary of some of the key concepts of quantum mechanics.
We introduce the notion of describing quantum states as vectors, using the language of Dirac
notation. With our notation set, we then derive one of the key fundamentals of quantum optics
and quantise the electromagnetic field as a discrete collection of harmonic oscillators.

This treatment, however, considers only a closed physical system, with no energy loss. We
therefore introduce and derive mathematical methods in Chapter 3 that take into consideration
loss of energy into the environment. Using the Born and Markov approximations, we derive the
Lindblad master equation for a damped electromagnetic field mode. Under the theory of open
quantum systems, the quantum regression formulae allow us to derive expressions for the two
main quantities discussed in this thesis: first- and second-order correlation functions. Finally,
we derive the open cascaded systems master equation, in which the output of one quantum
system is cascaded into another. With this method we are able to model a frequency-filtered
quantum system by coupling the output of a target system into a frequency filter.

The frequency filter we will introduce in this thesis – and indeed use for the main results –
is the multi-mode array filter, which we describe in Chapter 4. We start by discussing the basis
of our filtering model, the Fabry-Pérot interferometer from the perspective of classical optics.
Using the transfer matrix method, we derive expressions for the interferometer’s transmission
spectrum and compare them with expressions derived from a purely quantum model. We then
extend the filtering model to the multi-mode array filter, which consists of an array of single-
mode cavities, with a combined output field. We also derive expressions for the multi-mode
array filter’s temporal and frequency response.

Part II of this thesis concerns the two source systems we consider in this thesis. In Chapter 5
we will introduce the first of these: the resonantly driven two-level atom. We will discuss the
dynamics and key physical phenomena of the atom by itself, namely the Mollow triplet and
photon antibunching. The two-level atom will therefore act as the “training wheels” of the
multi-mode array filter, which will be the focus of Chapter 6. We investigate the frequency-
filtered first- and second-order correlation functions – both auto- and cross-correlation functions
– and compare the correlation functions from a single-mode and the multi-mode array filters,
highlighting the improved frequency isolation of the multi-mode array filter over the standard
single-mode. We therefore demonstrate the improvement of reproducing the idealised dressed
state correlations functions as derived in the secular approximation.

Finally, in Chapter 7 we introduce the second source system: the three-level ladder-type
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atom driven at two-photon resonance. The atomic structure of the three-level atom is based on
recent work by Gasparinetti et al. [65, 66], and offers more complex and interesting dynamics
than the two-level atom. In particular, when strongly driven the three-level ladder-type atom
displays seven distinct frequencies in its power spectrum, corresponding to various transitions
amongst its three dressed states. The increased complexity of this system offers an abundance
of interesting correlations to explore. We therefore present calculations of frequency-filtered
first- and second-order correlation functions for the three-level atom to further demonstrate the
effectiveness of the multi-mode array filter over the single-mode filter. We will also investigate
cross-correlations between the different transition frequencies, further verifying the dressed state
picture. The improved frequency isolation of the multi-mode filter allows us to uncover new
areas of correlations, as well as interesting new phenomena. In particular, we find extremely
asymmetrical cross-correlations between the different fluorescence peaks of the three-level atom.
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Quantum Optics and Filtering
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2 Quantum Mechanics and Quantum Optics

At a very basic level quantum mechanics is based on the idea of quantisation, where measured
values of physical systems are often discrete quantities. Originally formulated by the likes of
Heisenberg, Schrödinger, and Dirac [67–70], the subject is now a central part of the physics
curriculum.

We begin this thesis by setting out the fundamentals of quantum mechanics upon which the
following chapters build. We summarise the basic postulates of quantum mechanics and the
mathematical language we plan to use. We then quantise the electromagnetic field, which leads
us to introduce a set of basis states associated with the photon number of a single mode, the
so-called photon-number states or Fock states. Finally, we introduce coherent states, a useful
representation of the quantum state of laser light.

2.1 Formulation of Quantum Mechanics

While not the focus of this thesis, we aim to give a general summary of quantum mechanics
as a way of setting out our notation and methods. We follow the approach of Sakurai and others
(Refs. [71, 72]), and give an outline of the formulation of quantum mechanics originally devised
by Dirac [69].

2.1.1 Kets, bras, and inner products

We begin by considering a complex vector space, V, where the dimension of this space is
determined by the physical system under investigation. Each possible state of the physical
system, such as the spin of an atom or the number of photons in a cavity, can be represented
by a vector in this vector space, which we will write as a ket-vector, |a〉 ∈ V. Ket-vectors, or
kets, follow similar rules to vectors in a general vector space. That is we can add kets together
to form a new ket,

|a〉+ |b〉 = |c〉 , (2.1)

and we can multiply a ket by a complex scalar, c ∈ C, on the left-hand or right-hand side,

c |a〉 = |a〉 c. (2.2)

Here we note that the kets c |a〉 and |a〉 actually represent the same physical state; only the
direction of the ket vector is physically significant.

An arbitrary ket can be written as a combination of basis states (defined below),

|ψ〉 = c0 |a0〉+ c1 |a1〉+ c2 |a2〉+ · · · , (2.3)

where c0, c1, c2, . . . are complex coefficients.
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Where ket-vectors live in a vector space V, bra-vectors live in the dual-space, V∗. We denote
bra-vectors, or bras, by 〈b| ∈ V∗, and note that they map a ket to a complex number through
the inner product

(b, a) = (〈b|) · (|a〉) = 〈b|a〉 ∈ C. (2.4)

We now introduce two fundamental postulates relating to the inner product. Firstly, the inner
products 〈a|b〉 and 〈b|a〉 are complex conjugates of each-other,

〈a|b〉 = 〈b|a〉∗ , (2.5)

and secondly,
〈a|a〉 ≥ 0, (2.6)

where the inner product is only zero if |a〉 is a null-vector. Finally, two non-zero kets, |a〉 and
|b〉, are said to be orthogonal if

〈a|b〉 = 0. (2.7)

For every ket there is a one-to-one correspondence to a corresponding bra, a property also
known as dual correspondence. From Eq. (2.5), for the general ket, Eq. (2.3), we have the
corresponding bra dual:

〈ψ| = c∗0 〈a0|+ c∗1 〈a1|+ c∗2 〈a2|+ · · · , (2.8)

where we have taken the complex conjugate of the coefficients.

2.1.2 Operators, observables, and expectation values

Where bras map a ket to a complex number, operators map one ket (or bra) to another ket
(or bra). Operators act on the left of kets,

A · (|a〉) = A |a〉 (2.9)

which in general, but not necessarily, returns a different state. There are, however, particularly
useful states, known as the eigenkets, or eigenstates, of an operator, with eigenvalue equations

A |a0〉 = a0 |a0〉 , A |a1〉 = a1 |a1〉 , A |a2〉 = a2 |a2〉 , · · · , (2.10)

where a0, a1, a2, · · · ∈ C are the corresponding eigenvalues.
While there are exceptions, all operators considered in this thesis are linear, with

A (c0 |a0〉+ c1 |a1〉+ · · · ) = c0A |a0〉+ c1A |a1〉+ · · · . (2.11)

Operators can be multiplied, however, they do not generally commute. We therefore define the
commutator of two operators, A and B, as

[A,B] = AB −BA, (2.12)

and note that if two operators do commute then [A,B] = 0.
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Operators can also act on a bra, from the right side,

(〈a|) ·A = 〈a|A, (2.13)

and, similar to kets, this operation results in another bra. In general, the ket A |a〉 and the
bra 〈a|A are not the duals of one another. Instead we introduce the Hermitian adjoint of an
operator, A†, defined through the dual correspondence,

A |a〉 Dual Correspondence←−−−−−−−−−−−→ 〈a|A†. (2.14)

Observables, such as the momentum of a particle or the spin of an atom, can be mathematically
represented by an Hermitian operator, that is an operator X that is self-adjoint, with

X = X†. (2.15)

As previously mentioned, the eigenstates of observables are useful, in that they form a set of
orthogonal basis kets in the vector space with real eigenvalues, leading to the expansion of
Eq. (2.3). For a complete set of orthogonal basis kets, we also note the useful property of
closure, also known as the completeness relation:∑

i

|ai〉 〈ai| = 1. (2.16)

We can expand on the definition of the inner product of two states with the inclusion of an
operator. Recalling that 〈a|A† is the dual of A |a〉 we obtain

〈a|A|b〉 = 〈b|A†|a〉∗ . (2.17)

Assuming the system state is represented by a linear combination of basis vectors, Eq. (2.3),
when a measurement of an operator A is made, the result is one of the eigenvalues of A and
the system is cast (assuming no degeneracy) into the corresponding eigenstate |ak〉. We do
not know which of the eigenstates the system will be cast into, however we postulate that the
probability for arriving in a particular state, say |ak〉, is given by

P (ak) = | 〈ak|ψ〉 |2 = |ck|2. (2.18)

From here we define the average, or expectation value, of an operator A as

〈A〉 = 〈ψ|A|ψ〉 =
∑
i,j

c∗jci 〈aj |A|ai〉 =
∑
i

ai|ci|2, (2.19)

where the orthonormality of eigenkets with different eigenvalues has been used (see Ref. [71],
p. 15).
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2.1.3 The density operator

States that can be written as linear combination of basis states are also known as pure states.
Pure states are difficult to achieve, however, as experimental settings are not perfect. In most
cases, we may know that a physical system can be in one state, |ψi〉, with a probability pi, out of
an ensemble of possible states. When more than one possible state occurs with a non-vanishing
probability, the state can no longer be described by a single linear combination of kets, and is
instead known as a mixed state. We therefore introduce the density operator :

ρ =
∑
i

pi |ψi〉 〈ψi| , with
∑
i

pi = 1, pi ≥ 0. (2.20)

Given a basis set of eigenvectors, the density operator can be written as

ρ =
∑
i,j

ρij |aj〉 〈ai| , (2.21)

where ρij = 〈aj |ρ|ai〉 ∈ C defines the density matrix in the A-representation. The density
operator has two important properties: it is Hermitian, ρ = ρ†, and it has unit trace, tr [ρ] = 1.
With this definition of the density operator, we are able to generalise the expression for the
expectation of an operator, Eq. (2.19), to

〈A〉 = tr [ρA] . (2.22)

2.1.4 Time evolution

Whenever a system is not being directly measured, it evolves according to the time dependent
Schrödinger equation,

d

dt
|ψ〉 = 1

i~
H |ψ〉 , (2.23)

where H is the system Hamiltonian operator, and ~ is the reduced Planck constant. So long as
the Hamiltonian is time independent, we can formally integrate Eq. (2.23) to find

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.24)

where we introduce the unitary time evolution operator,

U(t, t0) = e
1
i~H(t−t0). (2.25)

With this definition, we find that the average value of an operator at some time t may be written
as

〈A(t)〉 = 〈ψ(t)|A|ψ(t)〉 = 〈ψ(0)|U†(t, t0)A U(t, t0)|ψ(0)〉 , (2.26)

so that as an alternative to the evolution of the ket vector in the Schrödinger picture, the
operator A evolves in the Heisenberg picture as

A(t) = U†(t, t0)A(t0) U(t, t0). (2.27)
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From Eqs. (2.25) and (2.27) we obtain the Heisenberg equation of motion for an operator A:

d

dt
A =

1

i~
[A,H]. (2.28)

2.2 Quantisation of the Electromagnetic Field

In order to represent the electromagnetic field in terms of quantum mechanical operators,
we begin by considering the field to be classical. Following the steps of Walls and Milburn
(Ref. [73], Chapter 2), we quantise the field in terms of a vector potential, expanding it over a
collection of independent harmonic oscillators.

2.2.1 Plane wave expansion of the field

We start with Maxwell’s equations in S.I. units for the electric and magnetic fields in free
space, E(r, t) and B(r, t) respectively, at position r and time t:

∇ ·E(r, t) = 0, (2.29a)

∇×E(r, t) = − ∂

∂t
B(r, t), (2.29b)

∇ ·B(r, t) = 0, (2.29c)

∇×B(r, t) =
1

c2
∂

∂t
E(r, t), (2.29d)

where c = (ε0µ0)
−1/2 is the speed of light in a vacuum, and ε0 and µ0 are the free space electric

permittivity and magnetic permeability, respectively. A solution to these equations can be
found by choosing a vector potential, A(r, t), such that

E(r, t) = − ∂

∂t
A(r, t), (2.30a)

B(r, t) = ∇×A(r, t). (2.30b)

We choose a vector potential here, as the divergence of both the electric and magnetic fields
are zero in a vacuum. We should note, however, that there is no unique potential that satisfies
Eqs. (2.30); a property known as gauge invariance. For a given time-independent scalar gauge
function, Λ(r), if A is a valid potential then so is

A′(r, t) = A(r, t)−∇Λ(r). (2.31)

We therefore find it useful to impose the Coulomb gauge,

∇ ·A(r, t) = 0, (2.32)
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where we have eliminated the longitudinal component of the vector potential, leaving us with
two transverse components. Maxwell’s equations now simplify to the wave equation,

∇2A(r, t)− 1

c2
∂2

∂t2
A(r, t) = 0. (2.33)

We consider the field to be contained inside a cubic volume V = L3, such that we may extend any
solution to neighbouring volumes with periodic boundary conditions, and expand the general
solution of Eq. (2.33) in terms of a discrete set of orthogonal mode functions,

A(r, t) =
∑
k

Ak(t)e
ik·r +A∗

k(t)e
−ik·r, (2.34)

with the sum ranging over all wave vectors k = kxx̂+ kyŷ + kzẑ, where

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (2.35)

with nx, ny, nz ∈ Z. The mode functions satisfy the transversality condition, Eq. (2.32), if

k ·A = 0. (2.36)

Two polarisation vectors orthogonal to k, labelled êk,λ=1,2 and corresponding to the two trans-
verse directions of the vector potential, are needed in general, such that this condition holds.
The vector potential can then be expanded as

A(r, t) =
∑
k,λ

Ak,λ(t)êk,λe
ik·r +A∗

k,λ(t)êk,λe
−ik·r. (2.37)

Substituting this vector potential into the wave equation, Eq. (2.33), and using the fact that
the mode functions are orthonormal, Eq. (2.36), yields

k2Ak,λ(t) +
1

c2
d2

dt2
Ak,λ(t) = 0, (2.38)

which has solution
Ak,λ(t) = Ak,λe

−iωkt, (2.39)

where we have used the free space dispersion relation

ωk = kc. (2.40)

Using this vector potential, the electric and magnetic fields may be written as

E(r, t) =
∑
k,λ

iωkêk,λAk,λe
i(k·r−ωkt) + c.c., (2.41a)

B(r, t) =
∑
k,λ

i (k × êk,λ)Ak,λe
i(k·r−ωkt) + c.c.. (2.41b)
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2.2.2 The field as a collection of harmonic oscillators

The total energy of the classical electromagnetic field in a cubic volume V = L3 is given by
the Hamiltonian

H =

∫
V

[
ε0
2
|E(r, t)|2 + 1

2µ0
|B(r, t)|2

]
d3r. (2.42)

The total energy is a conserved quantity, so we set t = 0 and consider

H =

∫
V

ε0
2

∑
k,λ

iωkêk,λAk,λe
ik·r + c.c.

2

+
1

2µ0

∑
k,λ

i (k × êk,λ)Ak,λe
ik·r + c.c.

2d3r. (2.43)

Noting that the wavevectors, k, are orthogonal to the polarisation vectors, ek,λ, and the or-
thonormality of the mode functions, the total energy simplifies to

H = 2ε0V
∑
k,λ

ω2
k|Ak,λ|2. (2.44)

The Fourier coefficients we have introduced, Ak,λ, are generally complex values, therefore we
introduce two real variables, Xk,λ and Pk,λ, corresponding to the generalised coordinate and
conjugate momenta, respectively. We therefore rewrite the Fourier coefficients as

Ak,λ =
1√
4ε0V

(
Xk,λ + iω−1

k Pk,λ

)
, (2.45)

which simplifies the Hamiltonian for the electromagnetic field to an infinite set of harmonic
oscillators:

H =
∑
k,λ

1

2

(
ωkX

2
k,λ + P 2

k,λ

)
. (2.46)

We make the final step of quantisation by converting the generalised coordinates and conjugate
momenta into quantum mechanical operators,

Xk,λ −→ xk,λ, Pk,λ −→ pk,λ, (2.47)

with the canonical commutation relation

[xk,λ, pk′,λ′ ] = i~δk,k′δλ,λ′ . (2.48)

We now introduce the mode annihilation and creation operators,

rk,λ =
1√
2~ωk

(ωkxk,λ + ipk,λ) , (2.49a)

r†k,λ =
1√
2~ωk

(ωkxk,λ − ipk,λ) , (2.49b)
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which, from Eq. (2.48), obey the boson commutation relations:

[rk,λ, r
†
k′,λ′ ] = δk,k′δλ,λ′ , (2.50a)

[rk,λ, rk′,λ′ ] = [r†k,λ, r
†
k′,λ′ ] = 0. (2.50b)

Thus, the Hamiltonian for the quantised electromagnetic field is finally cast in the form

H =
∑
k,λ

~ωk

(
r†k,λrk,λ +

1

2

)
. (2.51)

We find the time dependent expression of the annihilation operator by solving the Heisenberg
equation of motion, Eq. (2.25),

d

dt
rk,λ =

1

i~
[rk,λ,H] = −iωkrk,λ, (2.52)

which has solution
rk,λ(t) = e−iωktrk,λ(0). (2.53)

Finally, we substitute this into Eqs. (2.41) to write the electric and magnetic fields as operators:

E(r, t) = i
∑
k,λ

√
~ωk

2ε0V

[
êk,λrk,λe

i(k·r−ωkt) −H.c.
]
, (2.54a)

B(r, t) = i
∑
k,λ

√
~

2ε0ωkV

[
(k × êk,λ) rk,λe

i(k·r−ωkt) −H.c.
]
. (2.54b)

It is often useful to decompose the electric field operator into positive and negative frequency
contributions:

E(r, t) = E(+)(r, t) +E(−)(r, t), (2.55)

with

E(+)(r, t) = i
∑
k,λ

√
~ωk

2ε0V
êk,λrk,λ(t)e

ik·r, (2.56a)

E(−)(r, t) =
(
E(+)(r, t)

)†
. (2.56b)

2.2.3 Harmonic oscillator eigenstates

We now consider only a single wave-vector and polarisation of the quantised electromagnetic
field. The Hamiltonian,

H = ~ωk

(
r†krk +

1

2

)
, (2.57)

has discrete eigenvalues:
H |Enk

〉 = Enk
|Enk
〉 . (2.58)
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Using the boson commutation relation, Eq. (2.50), we find that the states rk |nk〉 and r†k |nk〉
are also eigenstates of the Hamiltonian, with eigenvalue equations

Hrk |Enk
〉 = (Enk

− ~ωk) rk |Enk
〉 , (2.59a)

Hr†k |Enk
〉 = (Enk

+ ~ωk) r
†
k |Enk

〉 . (2.59b)

From the two eigenvalue equations we see that the annihilation and creation operators act on
a ladder of states, with a set ground state |Enk=0〉. The ground state energy is fixed by noting
that rk |Enk=0〉 cannot be accepted as an energy eigenstate of the Hamiltonian as its energy
would be negative. Equation (2.59a) can only be satisfied by

rk |Enk=0〉 = 0. (2.60)

The eigenstate energy ladder then moves up in steps of ~ωk,

H |nk〉 = ~ωk

(
nk +

1

2

)
|nk〉 , (2.61)

where |nk〉, nk = 0, 1, 2, . . . , is a complete,

∞∑
nk=0

|nk〉 〈nk| = 1k, (2.62)

and orthogonal,
〈nk|mk〉 = δnk,mk

, (2.63)

set of basis states, known as the photon number or Fock states; they are eigenstates of the
photon number operator:

r†krk |nk〉 = nk |nk〉 . (2.64)

From Eqs. (2.59) we can see that the annihilation and creation operators have the actions

rk |nk〉 = β1 |nk − 1〉 , (2.65a)

r†k |nk〉 = β2 |nk + 1〉 , (2.65b)

where β1 and β2 are normalisation constants. To find these normalisation constants we use the
definition of the number operator, Eq. (2.64):

nk = nk 〈nk|nk〉 = 〈nk|r†krk|nk〉 = β∗1β1 〈nk − 1|nk − 1〉 = |β1|2, (2.66a)

and

nk + 1 = (nk + 1) 〈nk|nk〉 = 〈nk|rkr†k|nk〉 = β∗2β2 〈nk + 1|nk + 1〉 = |β2|2. (2.66b)
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We see then that rk and r†k act as raising and lowering operators for the ladder of harmonic
oscillation eigenstates:

rk |nk〉 =
√
nk |nk − 1〉 , (2.67a)

r†k |nk〉 =
√
nk + 1 |nk + 1〉 . (2.67b)

2.2.4 Coherent states

Fock states and their superpositions are useful states for fields with small photon numbers,
but they are not so useful for high photon numbers such as can be found in a laser field. A state
that is better suited for high intensity coherent fields is the coherent state, as first discussed in
this context in 1963 by Roy Glauber [7, 74]. Typically denoted by |αk〉 with coherent amplitude
αk ∈ C, the coherent state is an eigenstate of the annihilation operator,

rk |αk〉 = αk |αk〉 , (2.68)

and has the expansion in Fock states

|αk〉 = e−
1
2
|αk|2

∞∑
nk=0

αnk
k√
nk!
|nk〉 . (2.69)

Coherent states can also be generated from the vacuum state, |0〉, by the operation of the
displacement operator (see Ref. [73], Section 2.3):

|αk〉 = D(αk) |0〉 , D(αk) = eαkr
†
k−α∗

krk . (2.70)

Coherent states are not orthogonal, having the overlap

〈βk|αk〉 = e
− 1

2

(
|αk|2+|βk|2−2αkβ

∗
k

)
, (2.71)

but they do satisfy the closure relation

1

π

∫
|αk〉 〈αk|d2αk = 1k, (2.72)

and are therefore overcomplete.
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3 Quantum Open Systems

In the previous chapter it was mentioned that quantum systems, when not observed, evolve
freely under the time-dependent Schrödinger equation, although this is only true for completely
isolated physical systems. Closed quantum systems – that is, systems that do not experience
energy gain or loss – are not physically realisable in a realistic experimental setting as some
form of energy loss will be always present, even though the loss rate might be very small. Also,
we are typically interested in a driven quantum system where energy is being pumped into an
open system, which in turn serves as the source of an output field that is ultimately directed
into a filter cavity. To this end, in this chapter we introduce the specific techniques we will use
to model open quantum systems.

We first formulate a general master equation for a system coupled to an environment mod-
elled as a reservoir with an infinite number of degrees of freedom. We then consider the explicit
example of a cavity, or resonator, that supports a single mode of the electromagnetic field.
The single-mode cavity will form the basis of our initial frequency filtering model. We then
introduce two different methods of calculating two-time correlation functions from the master
equation, using the quantum regression equations. Finally, using this frequency filtering model
as inspiration, we derive a general master equation for an open quantum cascaded system, where
one quantum system’s output field is cascaded into the input of a second quantum system. We
illustrate the general master equation with the explicit example of a single cavity mode driven
by a cascaded coherent state source.

3.1 Lindblad Master Equation

We start by considering a system S which is coupled to a reservoir (environment) R through
an interaction between the two. We aim to derive an equation of motion that gives us complete
information about the evolution of the system with minimal dependence on the total system
S ⊗ R. While we begin with a general formulation for any system-reservoir coupling, we will
ultimately consider a single mode of the electromagnetic field (harmonic oscillator) coupled to
the full electromagnetic field, Eq. (2.51), as the reservoir.

Following the method of Carmichael (Ref. [75], Chapter 1), we give only a general formula-
tion of the derivation.

3.1.1 Coupled system and reservoir

We consider the generic Hamiltonian

H = HS +HR +HSR, (3.1)
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where HS is the Hamiltonian describing the system, HR is the Hamiltonian describing the
reservoir, and HSR is the Hamiltonian describing the interaction between the two. Introducing
the density operator for the total system S ⊗ R, χ, we define the reduced density operator for
the system, S, by tracing over the reservoir states:

ρ ≡ trR[χ]. (3.2)

The time evolution of the density operator in the Schrödinger picture is given by

d

dt
χ =

1

i~
[H,χ], (3.3)

where H is the total Hamiltonian, Eq. (3.1). We transform the density operator into an inter-
action picture by defining

χ̃(t) = U†(t)χ(t) U(t), (3.4)

with unitary transform operator
U(t) = e

1
i~ (HS+HR)t, (3.5)

whence, applying the transformation to Eq. (3.3) and differentiating Eq. (3.4), we obtain

d

dt
χ̃(t) =

1

i~
[H̃SR(t), χ̃(t)], (3.6)

where
H̃SR(t) = U†(t)HSR(0) U(t) (3.7)

is the interaction term transformed into the interaction picture. We can now formally integrate
Eq. (3.3) to find a solution,

χ̃(t) = χ̃(0) +
1

i~

∫ t

0
[H̃SR(t

′), χ̃(t′)]dt′, (3.8)

which can then be substituted back into Eq. (3.3) to obtain an exact equation expanded up to
second order in the interaction:

d

dt
χ̃(t) =

1

i~
[H̃SR(t), χ̃(0)]−

1

~2

∫ t

0
[H̃SR(t), [H̃SR(t

′), χ̃(t′)]]dt′. (3.9)

3.1.2 Born and Markov approximations

Assuming that when the interaction is turned on, at t = 0, there are no correlations between
the system and reservoir, the initial density operator factorises as

χ̃(0) = χ(0) = ρ(0)R0, (3.10)
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where R0 is the initial density operator for the reservoir. We now take the trace of Eq. (3.9)
over the reservoir states to obtain the master equation

d

dt
ρ̃(t) = − 1

~2

∫ t

0
trR

{
[H̃SR(t), [H̃SR(t

′), χ̃(t′)]]
}
dt′, (3.11)

where we have assumed that the coupling between S and R has zero mean in the initial reservoir
state R0; this allows us to neglect the first commutator in Eq. (3.9):

trR

[
H̃SR(t)R0

]
= 0. (3.12)

As the coupling between the system and the reservoir is weak, we also assume that the density
operator can be factorised at any time up to corrections of order HSR. We therefore expand
the density operator in powers of the coupling,

χ̃(t) = ρ̃(t)R0 +O (HSR) , (3.13)

and make the Born approximation by neglecting all but the first term on the right-hand side of
Eq. (3.13):

d

dt
ρ̃(t) = − 1

~2

∫ t

0
trR

{
[H̃SR(t), [H̃SR(t

′), ρ̃(t′)R0]]
}
dt′. (3.14)

The resulting equation of motion still depends, however, on the past behaviour of the system
through the integration over ρ̃(t′). Assuming that the reservoir is large compared to the system,
changes in the reservoir due to its interaction with the system are expected to dissipate quickly
at the location of the system-reservoir coupling . There exists, then, two different time scales:
a rapid time scale of decaying reservoir correlations, and a slower time scale governing the
evolution of the system. Thus, we make the Markov approximation and neglect any effect of
the system’s past behaviour on its future evolution, allowing us to replace ρ̃(t′) with ρ̃(t); thus
we obtain the master equation in the Born-Markov approximation:

d

dt
ρ̃(t) = − 1

~2

∫ t

0
trR

{
[H̃SR(t), [H̃SR(t

′), ρ̃(t)R0]]
}
dt′. (3.15)

3.1.3 Damped electromagnetic field mode

We now move to an explicit model where the system S is a single electromagnetic field mode
(harmonic oscillator) modelled as a ring cavity, as depicted in Fig. 3.1, with frequency ω0 and
ground state energy set to zero. The field mode is coupled to a many-mode electromagnetic field
(reservoir) expanded in one dimension, with frequencies ωj and photon annihilation operators
rj . The Hamiltonians for the system, reservoir, and interaction are:

HS = ~ω0a
†a, (3.16a)

HR =
∑
j

~ωjr
†
jrj , (3.16b)

HSR =
∑
j

~
(
g∗jar

†
j + gja

†rj

)
= ~

(
aΓ† + a†Γ

)
, (3.16c)
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Figure 3.1: Schematic of a ring cavity coupled to a reservoir comprising a free vacuum elec-
tromagnetic field expanded in one dimension with quantisation length L. The total cavity
round-trip length is l. The cavity has three perfectly reflecting mirrors (bold lines) and one
mirror with transmission coefficient T � 1 (light line).

where gj is the coupling between the system and the jth reservoir mode.
In one dimension, the ring cavity of round-trip length l has modes separated by the free

spectral range 2πc/l. Taking the continuum limit L→∞, the mode frequencies of the reservoir
field are much closer together and described by the one-dimensional mode density

%(ω) =
L

2πc
, (3.17)

where %(ω)dω is the number of modes with frequencies in the interval ω to ω+dω. From Fermi’s
Golden Rule, we can relate the spectral width of the cavity mode, 2κ, to the mode density and
coupling constants according to the standard result for the energy (photon) decay rate [70]:

2κ = 2π%(ω0)|gωj=ω0 |2. (3.18)

From Eq. (3.17) we see that the mode density is independent of frequency, and we therefore
approximate the coupling constants to also be frequency independent. Rearranging Eq. (3.18),
we then arrive at

gj =
√
2κ

√
c

L
. (3.19)

With the coupling constants now established, the explicit form of the master equation in the
Born-Markov approximation, from Eq. (3.15), is then

d

dt
ρ̃(t) =

∫ t

0

{
[aρ̃(t)a− aaρ̃(t)] e−iω0(t+t′)〈Γ̃†(t)Γ̃†(t′)〉R +H.c.

+
[
a†ρ̃(t)a† − a†a†ρ̃(t)

]
eiω0(t+t′)〈Γ̃(t)Γ̃(t′)〉R +H.c.

+
[
aρ̃(t)a† − a†aρ̃(t)

]
eiω0(t−t′)〈Γ̃(t)Γ̃†(t′)〉R +H.c.

+
[
a†ρ̃(t)a− aa†ρ̃(t)

]
e−iω0(t−t′)〈Γ̃†(t)Γ̃(t′)〉R +H.c.

}
dt′, (3.20)
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where, introducing the system and reservoir operators in the interaction picture,

ã(t) = U†(t)a(0)U(t) = e−iω0ta, (3.21a)

ã†(t) = U†(t)a†(0)U(t) = eiω0ta, (3.21b)

Γ̃(t) = U†(t)Γ(0)U(t) =
√
2κ

√
c

L

∑
j

e−iωjtrj , (3.21c)

Γ̃†(t) = U†(t)Γ†(0)U(t) =
√
2κ

√
c

L

∑
j

eiωjtr†j . (3.21d)

The reservoir correlation functions are evaluated with respect to the initial density operator
of the reservoir, R0. For simplicity’s sake we assume the reservoir is in the vacuum state and
hence the explicit correlation functions are:

〈Γ̃(t)Γ̃(t′)〉R =
2κc

L

∑
j,j′

e−iωjte−iωj′ t
′
trR
[
R0rjrj′

]
= 0, (3.22a)

〈Γ̃†(t)Γ̃†(t′)〉R =
2κc

L

∑
j,j′

eiωjteiωj′ t
′
trR

[
R0r

†
jr

†
j′

]
= 0, (3.22b)

〈Γ̃†(t)Γ̃(t′)〉R =
2κc

L

∑
j,j′

eiωjte−iωj′ t
′
trR

[
R0r

†
jrj′
]

= 0, (3.22c)

and

〈Γ̃(t)Γ̃†(t′)〉R =
2κc

L

∑
j,j′

e−iωjteiωj′ t
′
trR

[
R0rjr

†
j′

]
=

2κc

L

∑
j

e−iωj(t−t′). (3.22d)

The master equation then reduces to the form

d

dt
ρ̃(t) =

∫ t

0

{[
aρ̃(t)a† − a†aρ̃(t)

]
eiω0(t−t′)〈Γ̃(t)Γ̃†(t′)〉R

+
[
aρ̃(t)a† − ρ̃(t)a†a

]
e−iω0(t−t′)〈Γ̃(t′)Γ̃†(t)〉R

}
dt′, (3.23)

where, introducing the density of modes, Eq. (3.17), and noting that the coupling constant is
effectively zero as ω → 0, we extend the integral limits to −∞ and evaluate the correlation
function as

〈Γ̃(t)Γ̃†(t′)〉R =

∫ ∞

−∞

L

2πc

2κc

L
e−iω(t−t′)dω

= 2κδ
(
t− t′

)
. (3.24)
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Substituting this into Eq. (3.23) and computing the integral in the time domain we arrive at
the master equation in the interaction picture:

d

dt
ρ̃(t) = κ

(
2aρ̃(t)a† − a†aρ̃(t)− ρ̃(t)a†a

)
(3.25)

Finally, we transform back into the Schrödinger picture to arrive at the master equation for a
damped electromagnetic field mode:

d

dt
ρ =

1

i~
[HS , ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
. (3.26)

3.1.4 Free and scattered fields

Where the master equation focuses on the dynamics of the system, in this case an electro-
magnetic field mode, we make direct measurements on the output electromagnetic field. To
consider this, we turn to the Heisenberg picture and expand the electric field, Eqs. (2.55) and
(2.56), in terms of the reservoir operators. From the Hamiltonians, Eqs. (3.1) and (3.16), we
have the coupled equations for the reservoir and cavity mode annihilation operators:

d

dt
a = −iω0a− i

∑
j

gjrj , (3.27a)

d

dt
rj = −iωjrj − ig∗ja. (3.27b)

Then after introducing the slowly varying operators

ã(t) = aeiω0t, r̃j(t) = rje
iωjt, (3.28)

we formally integrate Eq. (3.27b) to obtain

r̃j(t) = rj(0)− ig∗j ei(ωj−ω0)t

∫ t

0
ã(t′)e−i(ωj−ω0)(t−t′)dt′. (3.29)

We substitute this into the expansion for the electric field operator, Eq. (2.56) in one dimension,
which yields

ê0 ·E(+)(z, t) = i
∑
j

√
~ωj

2ε0AL
rj(0)e

−iωj(t−z/c)

+ e−iω0(t−z/c)
∑
j

√
~ω0

2ε0AL
g∗j

∫ t

0
ã(t′)e−i(ωj−ω0)(t−t′−z/c)dt′, (3.30)

where, following Eq. (3.24), we treat the summation over modes as an integral over frequencies,
and hence obtain for the second term

e−iω0(t−z/c)

∫ t

0
ã(t′)δ

(
t− z/c− t′

)
dt′ =


0 if z < 0

1
2

√
2κa(t) if z = 0

√
2κa(t− z/c) if 0 < z < ct

. (3.31)



3.2 Two-Time Correlation Functions 23

The electric field, Eq. (3.30), can then be decomposed into two parts,

E(+)(z, t) = E
(+)
free(z, t) + E

(+)
source(z, t), (3.32)

where
E

(+)
free(z, t) = i

∑
j

√
~ωj

2ε0AL
rj(0)e

−iωj(t−z/c) (3.33)

accounts for the freely evolving field, in the absence of the field mode, and

E
(+)
source(z, t) =

√
~ω0

2εAc
×


0 if z < 0

1
2

√
2κa(t) if z = 0

√
2κa(t− z/c) if 0 < z < ct

, (3.34)

describes the source field radiated by the cavity mode.

3.2 Two-Time Correlation Functions

The focus of this thesis is frequency-filtered photon correlations from a source system. To
this end we must first understand how to calculate unfiltered two-time correlation functions.
The two correlation functions discussed in this thesis are the first- and second-order correlation
functions. The first-order correlation function,

G(1)(t, τ) = 〈E(−)(t)E(+)(t+ τ)〉, (3.35)

correlates the electric field at two different times, t and t + τ ; in the case of a stationary field
(correlation function independent of t) its Fourier transform gives the optical spectrum (see,
e.g., Ref. [73], Section 3.3). In contrast, the second-order correlation function,

G(2)(t, τ) = 〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(τ)〉, (3.36)

quantifies fluctuations in the intensity of the field; it is proportional to the probability of de-
tecting two photons, a first photon at time t and a second at time t+ τ [7, 8].

The master equation we have developed allows us to solve for the density operator of a
system interacting with a reservoir as a function of time; thus, it allows us to compute one-time
operator averages with Eq. (2.22). What it cannot directly provide, however, are multi-time
averages, which our focus on filtered photon correlations relies on. We now discuss how the
master equation can be used to compute these averages.

3.2.1 Quantum regression equations

Equations (3.35) and (3.36) yield more complex expressions when the decomposition of
the electric field, Eq. (3.32), is considered. Fortunately, however, thermal effects are mostly
negligible at optical frequencies. We may therefore take the free field to be in the vacuum state.
In this case, the normal and time ordered free field operators drop out, leaving the correlation
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functions expressed solely in terms of source operators. In order to calculate these averages, we
utilise the quantum regression equations. While this work is attributed to Lax (see Refs. [63,
64]), in this section we follow the steps of Carmichael (Ref. [75], Section 1.5).

In view of what follows, it is convenient to recast the master equation Eq. (3.26) in the
formal form

dρ

dt
= Lρ, (3.37)

where L is the Liouvillian superoperator

L• = 1

i~
[H, •] + κ

(
2a • a† − a†a • − • a†a

)
. (3.38)

Note that a superoperator acts on operators rather than on ket-vectors. Now the average of
the product of two general system operators, A and B, evaluated, respectively, at times, t and
t+ τ with τ ≥ 0, is given by

〈A(t)B(t+ τ)〉 = trS⊗R [χ(0)A(t)B(t+ τ)] , (3.39)

where the operators satisfy Heisenberg equations of motion, with formal solutions

A(t) = e−
1
i~HtA(0)e

1
i~Ht, B(t+ τ) = e−

1
i~H(t+τ)B(0)e−

1
i~H(t+τ). (3.40)

Substituting these solutions into Eq. (3.39) and making use of Eq. (3.4) and the cyclic property
of the trace, we then obtain

〈A(t)B(t+ τ)〉 = trS

{
B(0)trR

[
U(τ)χ(t)A(0)U†(τ)

]}
. (3.41)

We now extend the derivation of the master equation to the reduced operator

ρA(τ) ≡ trR

[
U†(τ)χ(t)A(0)U(τ)

]
, (3.42)

assuming that it also satisfies Eq. (3.37), with formal solution

ρA(τ) = eLτ [ρA(0)] = eLτ [ρ(t)A(0)] . (3.43)

Substituting this into Eq. (3.41) we arrive at the two-time correlation function

〈A(t)B(t+ τ)〉 = trS
[
B(0)eLτ (ρ(t)A(0))

]
. (3.44)

For the second-order correlation function, Eq. (3.36), a similar derivation yields (see Ref. [75],
p. 22 for details)

〈A(t)B(τ)C(t)〉 = trS
[
B(0)eLτ (C(0)ρ(t)A(0))

]
. (3.45)

3.2.2 Quantum regression equations for a complete set of operators

Rather than working with these formal expressions, we can reduce Eqs. (3.44) and (3.45) to
a more familiar and convenient form for making calculations. Specifically, we consider a set of
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system operators, B1, B2, . . . , whose expectation values obey a set of coupled linear equations
with evolution matrix M :

d

dt
〈B〉 = M〈B〉, 〈B〉 =


〈B1〉
〈B2〉

...
〈Bn〉

 . (3.46)

Following on from Eqs. (3.44) and (3.45) (see Refs. [75], Section 1.5.2 and [63] for details), we
find that the two-time correlation functions, 〈A(t)B(t+ τ)〉 and 〈A(t)B(t+ τ)C(t)〉, obey the
same coupled set of linear equations:

d

dτ
〈A(t)B(t+ τ)〉 = M〈A(t)B(t+ τ)〉, (3.47a)

d

dτ
〈A(t)B(t+ τ)C(t)〉 = M〈A(t)B(t+ τ)C(t)〉. (3.47b)

3.3 Cascaded Open Quantum Systems

In the previous section we have derived a master equation for a single system S coupled to
a reservoir, or environment, R. In this section we aim to take this derivation a step further, by
considering a composite model consisting of a source subsystem, whose output is coupled to a
target subsystem. While there are many approaches to this problem [60, 76], here we follow the
approach of Carmichael (Refs. [59] and [77], Section 19.2).

3.3.1 System-reservoir interaction Hamiltonian

While we can derive this master equation for two general subsystems, we will model the
source and target subsystems as two separate ring cavities, as depicted in Fig. (3.2), with
Hamiltonians

Hsource = ~ωss
†s, (3.48a)

Htarget = ~ωaa
†a, (3.48b)

where s (s†) and a (a†) are the respective annihilation (creation) operators for the source and
target modes. As before, we take the reservoir field to be a collection of harmonic oscillator
modes, so the total Hamiltonian, following Eq. (3.1), consists of

HS = Hsource +Htarget, (3.49a)

HR =
∑
j

~ωjr
†
jrj , (3.49b)

HSR = Hsource
SR +Htarget

SR , (3.49c)
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Figure 3.2: Schematic of a cascaded system with the output of a source subsystem, Hsource,
coupled as the input of a target subsystem, Htarget. The quantisation length of the field is L
and the input mirrors of the two subsystems are a distance d apart. As in Fig. 3.1, each cavity
has three perfectly reflecting mirrors (bold lines) and one mirror with transmission coefficient
T � 1 (light line).

where

Hsource
SR =

∑
j

~
(
g∗s,jsr

† + gs,js
†r
)
, (3.50a)

Htarget
SR =

∑
j

~
(
g∗a,jar

†e−iωjd/c + ga,ja
†reiωjd/c

)
. (3.50b)

are the interaction terms that account for transmission and reflection of the reservoir field at
z = 0 and z = d. Following from Eq. (3.19), the reservoir coupling coefficients for the two
subsystems are:

gs,j =
√
2κs

√
c

L
, (3.51a)

ga,j =
√
2κa

√
c

L
, (3.51b)

where 2κs and 2κa are the spectral widths of the source mode and target mode, respectively. The
output field of the source subsystem is carried to the target via the one-dimensional reservoir
field where, making the same decomposition as in Eq. (2.55),

ê0 ·E(+)(z, t) = i
∑
j

√
~ωj

2ε0AL
rj(t)e

i(ωjz/c+φ(z)), (3.52)
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where

φ(z) ≡


0 if z ≤ 0

φsource
R if 0 < z ≤ d

φsource
R + φtarget

R if d < z

, (3.53)

with phase changes upon reflection from the source mirror at z = 0, φsourceR , and from the target
mirror at z = d, φtargetR . Expressing the reservoir field in units of the photon flux, with

E(z, t) ≡
∑
j

√
ωj

1
2 (ωs + ωa)

√
c

L
rj(t)e

i(ωjz/c+φ(z)), (3.54)

and setting ωj/
1
2 (ωs + ωa)→ 1, the interaction Hamiltonians simplify to

Hsource
SR = ~

√
2κs

(
sE†(0, 0) + s†E(0, 0)

)
, (3.55a)

Htarget
SR = ~

√
2κa

(
aE†(d, 0) + a†E(d, 0)

)
. (3.55b)

As previously mentioned, the coupling of the source subsystem to the target is carried by
the reservoir field. Following Eq. (3.32), we decompose the reservoir field into three pieces:

E(z, t) = Efree(z, t) + Esource(z, t) + Etarget(z, t), (3.56)

with free field
Efree(z, t) =

∑
j

√
c

L
rj(0)e

−i[ωj(t−z/c)−φ(z)], (3.57a)

source field

Esource(z, t) =


0 z < 0

−i12
√
2κss(t

′) z = 0

−ieiφ(z)
√
2κss(t

′) 0 < z < ct

, (3.57b)

and target field

Etarget(z, t) =


0 z < d

−i12
√
2κaa(t

′′) z = d

−ieiφ
target
R
√
2κaa(t

′′) d < z < ct

, (3.57c)

with t′ = t− z/c and t′′ = t− (z − d)/c.

3.3.2 The cascaded systems master equation

The source and target subsystems are coupled to the reservoir at two different locations,
z = 0 and z = d. At these locations we have two different field operators, E(0, 0) and E(d, 0),
which are correlated, so it is not permissible to treat the reservoir interactions as independent.
Instead we consider the time-retarded density operator

χret ≡ Usource (−d/c)χ U†
source (−d/c) , (3.58)
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with
Usource(−d/c) ≡ e

1
i~
(
Hsource+HR+Hsource

SR

)
(−d/c). (3.59)

The field propagates freely from the source subsystem to the target, i.e., from z = 0 to z =

d, and it carries photons emitted by the source. The time retardation applies only to the
source subsystem and its interaction with the reservoir; it is introduced to formally undo the
propagation of the source subsystem output field to the target subsystem. The Schrödinger
equation now becomes

d

dt
χret =

1

i~
[Hret, χret], (3.60)

where
Hret ≡ HS +HR +Hsource

SR +
(
Htarget

SR

)
ret
, (3.61)

with (
Htarget

SR

)
ret
≡ ~
√
2κa

(
aE†(d−, d/c) + a†E(d−, d/c)

)
, (3.62)

and
E(d−, d/c) ≡ U†

source(d/c)E(d, 0)Usource(d/c). (3.63)

The field operator E(d−, d/c) represents the field that arrives at the target subsystem, z = d,
at the retarded time d/c. Note that this field is the sum of the free field, Efree(d, d/c), and the
output field from the source subsystem, Esource(d, d/c) – there is no contribution from the target
subsystem, i.e., no self-field term. Using the fact that the field propagates freely from the source
output, we then obtain

E(d−, d/c) = eiφ
source
R E(0, 0)− i1

2
eiφ

source
R
√
2κss, (3.64)

where we have taken the definitions of the fields from Eq. (3.57). After substituting Eq. (3.64)
into Eq. (3.62), the total Hamiltonian for the time-retarded system takes the form

Hret = Hc
S +HR +Hc

SR, (3.65)

where
Hc

S = Hsource +Htarget + i~
√
κsκa

(
e−iφsource

R as† − eiφsource
R a†s

)
, (3.66)

and

Hc
SR = ~

(√
2κss+ e−iφsource

R
√
2κaa

)
E†(0) + ~

(√
2κss

† + eiφ
source
R
√
2κaa

†
)
E(0). (3.67)

Both the source and target subsystems now couple to the same reservoir operator, E(0) ≡ E(0, 0),
and we can follow through the method from Section 3.1.3 to arrive at the master equation for a
source subsystem, mode s, cascaded with a target subsystem, mode a, with retardation from the
source:

d

dt
ρret =

1

i~
[Hc

S , ρret] +
1

2

(
2JcρretJ

†
c − J†

cJcρret − ρretJ
†
cJc

)
, (3.68)
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with cascaded decay operator

Jc ≡
√
2κss+ e−iφsource

R
√
2κaa. (3.69)

3.3.3 Coherently driven damped electromagnetic field mode

Where Eqs. (3.66) and (3.68) are for general source and target subsystems, we now move our
focus towards a more specific example, namely an idealised laser model coupled into a target
cavity mode. As before, we take the source subsystem to be a single cavity mode, however
it is now driven by a classical current with amplitude Ecurrent. The cascaded systems master
equation then takes the form

dρ

dt
= −iωs[s

†s, ρ]− i[Ecurrente
−iωsts† + E∗currente

iωsts, ρ] + κs

(
2sρs† − s†sρ− ρs†s

)
− iωa[a

†a, ρ] + κa

(
2aρa† − a†aρ− ρa†a

)
+ 2
√
κsκa

(
aρs† − ρs†a+ sρa† − a†sρ

)
. (3.70)

The density operator for the source subsystem can be obtained by tracing out the target state,

ρsource = trtarget [ρ] , (3.71)

which, from Eq. (3.70), returns the master equation

dρsource
dt

= −iωs[s
†s, ρsource]− i[Ecurrente

−iωsts† + E∗currente
iωsts, ρsource] (3.72)

+ κs

(
2sρsources

† − s†sρsource − ρsources
†s
)
, (3.73)

with steady-state solution

ρsssource = |αse
−iωst〉 〈αse

−iωst| , αs = −i
Ecurrent
κs

. (3.74)

We see here that the classical driving current maintains the source mode in a coherent state,
oscillating with amplitude αs at frequency ωs. The cascaded system master equation, Eq. (3.70),
then has a factorised solution of the form

ρ(t) = ρsssourceρtarget(t), (3.75)

where

dρtarget
dt

= −iωa[a
†a, ρtarget]− 2

√
κsκa[αse

−iωsta† − α∗
se

iωsta, ρtarget]

+ κa

(
2aρtargeta

† − a†aρtarget − ρtargeta
†a
)
. (3.76)

Equation (3.76) can be solved by a coherent state, |αa(t)〉, i.e., by substituting the ansatz
ρtarget(t) = |αa(t)〉 〈αa(t)|. With the coherent state expressed in terms of the displacement
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operator, as in Eq. (2.70), we obtain for the left-hand side:

L.H.S =
dαa(t)

dt
a† |αa(t)〉 〈αa(t)|+

dα∗
a(t)

dt
|αa(t)〉 〈αa(t)| a

−
[
αa(t)

dα∗
a(t)

dt
+ α∗

a(t)
dαa(t)

dt

]
|αa(t)〉 〈αa(t)| , (3.77)

and, similarly, for the right-hand-side:

R.H.S =
[
− (κa + iωa)αa(t)− 2

√
κaκsαse

−iωst
]
a† |αa(t)〉 〈αa(t)|

+
[
− (κa − iωa)α

∗
a(t)− 2

√
κaκsα

∗
se

iωst
]
|αa(t)〉 〈αa(t)| a

+
[
2
√
κaκsαse

−iωstα∗
a(t) + 2

√
κaκsα

∗
se

iωstαa(t) + 2κ|αa(t)|2
]
|αa(t)〉 〈αa(t)| . (3.78)

Comparing similar terms in Eqs. (3.77) and (3.78), we then see that Eq. (3.76) can indeed be
solved by a coherent state, |αa(t)〉, where αa(t) obeys the classical equation of motion

dαa

dt
= − (κa + iωa)αa − 2

√
κsκaαse

−iωst. (3.79)
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4 Frequency Filtering Through Optical Cavities

We begin this chapter with a discussion of the most common type of frequency filtering
device in optical – both classical and quantum – settings: the Fabry-Pérot interferometer, or
cavity, named after Charles Fabry and Alfred Pérot. Using a transfer matrix method we derive
simple expressions for the transmission spectrum of a Fabry-Pérot cavity, accounting for all
possible modes that are supported. These spectra are then compared to those of a quantum
optical model, where we allow for only a single supported mode.

Single-mode Fabry-Pérot cavities are relatively simple to implement as frequency filters in
quantum optics, both experimentally and theoretically. This ease of use and effectiveness is
one of the reasons why they are so widely used [78, 79]. Unfortunately the Lorentzian-shaped
frequency response is not ideal when considering multi-frequency input sources due to the trade
off between frequency isolation and temporal response. Lending inspiration from the ideal, yet
unobtainable, box-filter, we introduce the novel filtering model that we will use throughout the
thesis: the multi-mode array filter. We then calculate the temporal and frequency response of
this filter model and compare them to that of a conventional single-mode cavity.

4.1 Single-Mode Cavities and Lorentzian Distributions

The transfer matrix method is an especially useful and powerful method for describing the
propagation of fields through linear optical media [79]. Here we present a brief investigation
of the transmission spectrum of a Fabry-Pérot cavity, comparing it to the derived transmission
spectrum derived from a quantum optical model.

4.1.1 Transmission spectrum of a Fabry-Pérot cavity

The propagation of electromagnetic waves through a linear optical medium, or element, can
be described using the transfer matrix method, where the left- and right-hand incoming and
outgoing fields of the element are related via a transfer matrix,(

E
(in)
1

E
(out)
2

)
= T

(
E

(out)
1

E
(in)
2

)
. (4.1)

The transfer matrix for a system composed of multiple optical elements is given by the product
of the transfer matrices of each of the components; for the Fabry-Pérot cavity, as depicted in
Fig. 4.1, this is the product of the matrices for the two mirrors, M1 and M2, and the for free
propagation over a length l between the two mirrors [80, 81]:
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Figure 4.1: The Fabry-Pérot cavity consists of two partially reflecting mirrors, M1 and M2,
separated by a distance of free-space, l. Here the left and right directional fields are labelled as
E1 and E2 respectively, where the input and output fields are related by the transfer matrix,
Eq. (4.2).

T (FP) = T (M1)T (free)T (M2)

=
i√
T1

(
−1

√
R1

−
√
R1 T1 +R1

)
×

(
e−ikl/

√
η 0

0
√
ηeikl

)
× i√

T2

(
−1

√
R2

−
√
R2 T2 +R2

)

=
e−ikl

√
ηT1T2

(
1− e2iklη

√
R1R2 −

√
R2 + e2iklη

√
R1 (T2 +R2)√

R1 − e2iklη
√
R2 (T1 +R1) −η

√
R1R2 (T1 +R1) (T2 +R2)

)
, (4.2)

where Rj (Tj) is the reflectivity (transmittance) of mirror j, l is the propagation length of the
cavity, η is the propagation efficiency inside the cavity, and k = ω/c is the wavenumber of the
propagating wave with frequency ω and speed c. The frequency spacing between supported
modes inside the cavity, known as the free spectral range (FSR), is defined by

ωFSR = 2π × FSR = 2π
c

2l
=
πc

l
. (4.3)

This allows us to write
eikl = e

iπ ω
ωFSR = e

iπ ω−ωc
ωFSR , (4.4)

where we have introduced the cavity resonance frequency ωc which satisfies

e
−iπ ωc

ωFSR = 1. (4.5)

For the sake of simplicity, we ignore any intrinsic cavity loss, η = 1, and set the mirrors to be
lossless and identical, so that R1 = R2 = R and T1 = T2 = 1− R. The transmission spectrum
is then given by:

S
(FP )
T =

∣∣∣∣∣ 1

T (FP)
11

∣∣∣∣∣
2

=
(1−R)2

1 +R2 − 2R cos
(
2π ω−ωc

ωFSR

) . (4.6)

We show Eq. (4.6) in Figs. 4.2 and 4.3 for a variety of different parameters. From Fig. 4.2 and
Eq. (4.3) we see that, by increasing the length of the cavity, the FSR decreases and therefore
the modes move closer in frequency space. An increase in length also shows a decrease in the
linewidth of each mode. Figure 4.3 shows, for a fixed length, that by decreasing the reflectivities
of the two mirrors, there is an increase in the linewidth, to the point that the responses of each
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Figure 4.2: Transmission spectra of a Fabry-Pérot cavity with lengths: l = 2 m (blue, solid),
l = 4 m (orange, dashed), and l = 6 m (green, dot-dash). The reflectivities of the two mirrors
are fixed at R = 0.85.
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Figure 4.3: Transmission spectra of Fabry-Pérot cavity with reflectivities of the two mirrors:
R = 0.95 (blue, solid), R = 0.75 (orange, dashed), and R = 0.55 (green, dot-dash). The length
of the cavity is fixed at l = 2 m.
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Figure 4.4: Transmission spectra of a single-mode filter using the transfer matrix method (blue,
solid) and the quantum model (orange, dashed). For the transfer matrix method, Eq. (4.6), the
parameters are R = 0.8 and l = 40 m. For the single-mode mode approximation, Eqs. (4.7) and
(4.8), the total cavity decay rate is κc/2π = 0.119 MHz.

mode start to overlap. Allowing for multiple overlapping modes is not beneficial when applied
to frequency filtering; with a frequency response that extends over all frequency space, any
photon is able to pass through. We can, however, approximate a single-mode response from the
Fabry-Pérot by making some simple assumptions: first, we assume the cavity to have a short
length, increasing the FSR as in Fig. 4.2; secondly, we assume the reflectivities of both mirrors
are high. In this limit where 1−R� 1, Eq. (4.6) reduces to

S
(FP)
T (ω) =

κ2c

κ2c + (ω − ωc)
2 , (4.7)

where
κc =

ωFSR

2π
(1−R) , (4.8)

is the total field decay rate for the cavity. As shown in Fig. 4.4, this approximation works well
provided that the FSR of the cavity is large enough; we see that the single-mode approxima-
tion closely matches the Lorentzian distribution of the central mode from the transfer matrix
approach. As we will see in the following section, Eq. (4.7) is comparable to the result obtained
from the purely quantum optical approach of a single-mode cavity.

4.1.2 Quantum optical single-mode cavity

Through Eq. (4.7) we have shown that the single-mode approximation of a Fabry-Pérot
cavity works well for isolated modes, however we now wish to take a quantum optical treatment.
Following on from Eqs. (3.76) and (3.79), we model the scanning interferometer as a single-
mode cavity. To demonstrate its frequency response we consider it to be driven by a frequency
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dependent coherent driving field, with Hamiltonian

HC = ~ωca
†a+ i~

(
Ede−iωta† − E∗deiωta

)
, (4.9)

where ωc is the tunable resonance frequency of the cavity mode and Ed is the coherent driving
amplitude of the pump at frequency ω (from Eq. (3.76) we can take Ed = −2αs

√
κsκa). The

cavity also experiences photon loss at a rate 2κ, which can be described by the master equation

dρ

dt
=

1

i~
[HC , ρ] + κ

(
2aρa† − a†aρ− ρa†a

)
. (4.10)

Taking the cavity to initially be in the vacuum state, we recast Eq. (3.76) and write the equation
of motion for the coherent state amplitude of the cavity field as

d

dt
α(t) = − (κ+ iωc)α(t) + Ede−iωt, (4.11)

which has solution
α(t) =

Ede−iωt

κ− i (ω − ωc)

(
1− e−κtei(ω−ωc)t

)
. (4.12)

In the long time limit, t → ∞, we find the cavity response as a function of drive frequency, ω,
at fixed ωc, is a Lorentzian shape with halfwidth κ,

|α(ω)|2 = |Ed|2

κ2 + (ω − ωc)
2 , (4.13)

which, like Eq. (4.7), is a Lorentzian distribution. Here we arrive at the main issue with
single-mode cavity filters and Lorentzian distributions for time-dependent photon correlations.
Ultimately we aim for a filter which allows target photons to enter the cavity and be re-emitted
immediately after. The bandwidth of the filter, however, is inversely proportional to the cavity
lifetime, κ. A faster temporal response then requires a larger bandwidth, yet the tails of a
Lorentzian distribution extend quite far from a target frequency. If our source system emits
photons of frequencies spread over some range, these long tails may allow non-target frequencies
to enter into the cavity. If we then decrease the bandwidth to reject non-target frequencies, the
average lifetime of a photon inside the cavity increases and the filtered photon correlations will
no longer be indicative of the true nature of the source system dynamics [39].

4.2 An Improved Filtering Model

Our ultimate goal is to develop a type of filter model that allows us to pick very specific
frequencies from a general source system and calculate photon correlations. To do this we take
inspiration from an ideal bandpass filter, i.e., the sinc filter. With its infinitely sharp frequency
response cut-off, we can increase the bandwidth, and thus the temporal response, much more
than a conventional Lorentzian filter while still maintaining good frequency isolation.

We begin this section with a brief discussion on sinc filters and their limitations. We then
introduce the novel model used in this thesis, the multi-mode array filter, and investigate its
temporal and frequency responses.
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Figure 4.5: Time series and Fast-Fourier Transform (FFT) of a complete sinc function (a),
positive-side sinc function (b), and a positive-side sinc function with a π phase delay (c).
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4.2.1 The sinc function and ideal filters

In the realm of frequency filtering an ideal bandpass filter is one which allows complete
transmission over a certain frequency range and complete attenuation outside. One such model
is the sinc filter – also known as the rectangle filter – which results from the Fourier transform
of the sinc function in the time domain:

F [sinc (at)] =
a

2π

∫ ∞

−∞

sin (at)

at
eiωtdt =


0 a < |ω|
1
4 |ω| = a

1
2 |ω| < a

. (4.14)

We see from this equation, and in Fig. 4.5a, that by increasing the width of the intervals in the
sinc response we also increase the width of the frequency response.

Unfortunately, perfect sinc filters are non-causal filters, and are physically impossible to
realise. Unlike causal filters, which only use past and present inputs to produce a response, the
sinc filter also includes negative times; the filter responds to an impulse before it has arrived,
violating the principles of causality and time invariance (see Ref. [82], Chapter 11). We can
consider a physically realisable causal filter by neglecting the negative time response, with
θ(t)sinc (at), where

θ(t) =

0 t ≤ 0

1 0 < t
(4.15)

is the Heaviside step function. In dropping half of the temporal response, we see in Fig. 4.5b
that the frequency response, as calculated from the Fourier transform, has drastically changed.
The introduced artefacts still show a semblance of the original rectangular “width”, yet the
sharp frequency cut-off has been completely lost, and there is now a low dip in the centre of
the frequency response.

Fortunately, we can recover the rectangular nature by introducing a phase modulation.
Shifting the centre of the temporal response to the right, we regain more of the initial sinc
function. In Fig. 4.5c we introduce a π-phase delay, with response θ(t)sinc (at− π). The Fourier
transform of this shows a much sharper cut-off than non-delayed response, Fig. 4.5b, and the
central peak has been restored. We can increase the phase modulation even further, recovering
much more of the sinc function, leading to an even more rectangular frequency distribution.
Unfortunately, a greater phase modulation also results in a greater temporal delay. As we
are ultimately interested in calculating photon correlations from filtered sources, we need to
minimise the temporal delay of our filter as much as possible. We will see in the following
sections what impact the size of this delay has on the filter response, and how much delay we
can introduce without affecting the performance of the filter.

4.2.2 A novel approach: Multi-mode array filtering

It is no simple feat to develop a new cavity model that does not have a non-Lorentzian
frequency response, as we have shown this is an innate property of Fabry-Pérot cavities. We
therefore propose a model where we couple the output of a system of interest into an array of
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single-mode cavities, each with a small bandwidth, rather than a solitary cavity. At first glance,
the smaller bandwidth of each individual cavity mode might appear to result in a poor temporal
resolution of the filter as a whole, nevertheless we will see in the following sections that this is
not the case.

The proposed model consists of 2N+1 cavity modes, where the resonance frequency of each
mode is slightly detuned from a central frequency ωc. To achieve equal coupling, we pass the
input field through an array of mirrors with increasing reflectivity, as shown in Fig. 4.6, where
the reflected field couples an equal amplitude into each individual cavity mode. We therefore
extend the Hamiltonian, Eq. (4.9), as

H = ~
N∑

j=−N

ωja
†
jaj + i~

N∑
j=−N

(
Eje−iωta†j − E

∗
j e

iωtaj

)
, (4.16)

where N is the number of cavity modes either side of the central mode, a†j (aj) is the photon
creation (annihilation) operator for the jth filter mode,

ωj = ωc + jδω (4.17)

is the resonance frequency of the jth filter mode, with mode frequency spacing δω, and

Ej =
Ed√

2N + 1
eimjπ/N (4.18)

is the mode-dependent driving amplitude. Note here that a mode dependent phase modulation
is applied to each filter mode with the exponential term in Eq. (4.18), where m sets the size of
the introduced delay.

The output of each filter mode is directed into individual detectors, allowing us to write the
master equation as

dρ

dt
=

1

i~
[H, ρ] + κ

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)
, (4.19)

where, as before, 2κ is the total cavity decay rate for each mode.

4.2.3 Temporal response to an impulse

Before we assess the frequency response of this proposed model, we will first investigate its
temporal response to an impulse. As with the single-mode cavity, we calculate the coherent
state amplitude of the cavity field, however, we replace the continuous driving in Eq. (4.16)
with an impulse driving term. The equation of motion for the field amplitude for the jth filter
mode is then

d

dt
αj(t) = − (κ+ iωj)αj(t) + Ejδ(t), (4.20)

where δ(t) is the Dirac delta-function. Equation (4.20) has solution

αj(t) = Eje−(κ+iωj)tθ(t), (4.21)
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Figure 4.6: Schematic of coherently driven multi-mode array filter model. The input field
is evenly split into each individual two-sided cavity mode, where a mode-dependent phase
modulation is applied. To achieve the equal coupling of the input fluorescence, the input field
is passed through an array of beam splitters with increasing intensity reflectivity coefficients.

where θ(t) is the Heaviside step function, as defined in Eq. (4.15). To find the total response of
the array filter we add the mode amplitudes together, and consider the collective field amplitude:

A(t) =
1√

2N + 1

N∑
j=−N

αj(t). (4.22)

Assuming a large number of closely-spaced modes, we can convert the summation over modes
into an integral. We then find the collective field amplitude to be:

A(t) ' 1√
2N + 1

∫ N

−N
α(j, t)dj =

∫ N

−N

Ed
2N + 1

eijmπ/Ne−[κ+i(ωc+jδω)]tθ(t)dj

=
Ed

2N + 1
θ(t)e−(κ+iωc)t ×

∫ N

−N
e−i(Nδωt−mπ)j/Ndj

=
NEd

2N + 1
θ(t)e−(κ+iωc)t × ei(Nδωt−mπ) − e−i(Nδωt−mπ)

i (Nδωt−mπ)

=
NEd

2N + 1
θ(t)e−(κ+iωc)t × 2 sin (Nδωt−mπ)

(Nδωt−mπ)

=
2NEd
2N + 1

θ(t)e−(κ+iωc)tsinc (Nδωt−mπ) . (4.23)

We see here that this proposed model behaves as we expect from a sinc-response filter. When
compared with Eq. (4.14), the halfwidth of the filter is given by the span of modes in Eq. (4.17),
Nδω. We also see a similarity with the positive-sided and shifted sinc response in Fig. (4.5c),
where the causality is enforced by the Heaviside step function and the temporal delay of mπ
arises from the mode-dependent coupling, Eq. (4.18).

Ignoring the normalisation term and the Heaviside step-function, there is one important
difference in Eq. (4.23) when compared to the ideal sinc response: the exponential decay and
oscillating term e−(κ+iωc)t. The oscillatory term, e−iωct, simply centres the response in frequency
space at ωc, as we see with the single-mode cavity in Eq. (4.12). The cavity decay term, however,
can have a much more significant effect on the filter’s response. This is shown in Fig. 4.7, where
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Figure 4.7: Normalised field amplitude response to an impulse driving, Eq. (4.23), with m = 0
(blue, solid), m = 1 (orange, dashed), and m = 2 (green, dot-dash). Also shown is pure sinc
term of Eq. (4.23) (grey, dotted), showing the effect the decay has on the temporal response.
The other parameters are N = 20, δω/|Ed| = 0.1, κ/|Ed| = 0.2, ωc/|Ed| = 0.0.

the response for the phase-shifted multi-mode array filter, in orange, is plotted against the sinc
term in Eq. (4.23), with m = 1. The cavity decay causes the response, and thus the peaks, to
decay with regard to the pure sinc term, an effect which becomes more noticeable for larger κ.
We are able to mitigate this affect, and thus achieve a response closer to a pure sinc function,
by ensuring the decay of each cavity mode is much smaller than the effective halfwidth of the
array filter, κ � Nδω. We will see in the following section, however, that this is not without
its limits.

4.2.4 Cavity response in frequency space

The sinc-like response due to an instantaneous driving impulse is promising, yet it is not
enough to tell the entire story of the filter. To see whether this new model has a much sharper
frequency cut-off than a standard Lorentzian, we must return to the case of a continuous drive
and investigate the response of the filter in frequency space. With the same approach that
led to Eq. (4.13), we replace the delta-function in Eq. (4.20) with a continuous driving term,
at frequency ω, so that the rate equation for the cavity field amplitude of the jth filter mode
becomes

d

dt
αj(t) = − (κ+ iωj)αj(t) + Eje−iωt, (4.24)

which has a solution in the long-time limit similar to Eq. (4.12),

αj(ω) =
Eje−iωt

κ− i (ω − ωj)
. (4.25)
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Following the same approach as for Eq. (4.23), we find the frequency response of the filtering
system is the total sum of the field amplitudes of all modes:

A(ω) =
1√

2N + 1

N∑
j=−N

αj(ω). (4.26)

The solution, Eq. (4.12), is more complex than Eq. (4.23) due to the dependence on the mode
number, j, in both the denominator and in the exponential phase modulation in Ej , Eq. (4.18),
hence it is difficult to derive a general analytic expression for the frequency response. We can
remove the mode dependency in the numerator in the case where m = 0, that is, when there is
no phase modulation. As before, we may then replace the sum over modes with an integral to
find the collective field amplitude as:

A(ω) '
∫ N

−N

Ede−iωt

2N + 1

1

κ− i (ω − ωc − jδω)
dj

=
Ede−iωt

2N + 1

∫ N

−N

1

κ− i (ω − ωc) + ijδω
dj

=
−ie−iωt

2N + 1

Ed
δω

[
log [κ− i (ω − ωc − jδω)]

]N
−N

=
−ie−iωt

2N + 1

Ed
δω

log

[
κ− i (ω − ωN )

κ− i (ω − ω−N )

]
, (4.27)

where ω±N are given by Eq. (4.17). The cavity frequency response is, therefore,

|A(ω)|2 = |Ed|2

δω2 (2N + 1)2
log

[
κ+ i (ω − ωN )

κ+ i (ω − ω−N )

]
log

[
κ− i (ω − ωN )

κ− i (ω − ω−N )

]
, (4.28)

from which we see the effective width of the filter in the ω − ω±N terms.
Using Eq. (4.28), we plot, in Fig. 4.8a, the frequency response of the multi-mode array filter

for a range of effective halfwidths: Nδω/|Ed| = 1, 2, and 4. With our aim of creating a frequency
filter that is more effective than a single-mode Lorentzian, we also compare these responses with
a Lorentzian of halfwidth κ/|Ed| = 1. Without shifting the temporal response of the filter, the
multi-mode responses resemble that of the response in Fig. 4.5b; there is a slow decay in the
frequency cut-off and we see the characteristic “bunny-ear” peaks at ω±N .

Knowing that we can better approximate a box-like response by introducing a phase mod-
ulation we show numerical calculations, using Eq. (4.26) for m = 1 and m = 2, in Figs. 4.8b
and 4.8c, respectively. Figure 4.8b shows an immediate improvement over the m = 0 case. The
“dip” in the response of the central frequencies has been removed and there is a much sharper
frequency cut-off, even for the larger halfwidth of Nδω/|Ed| = 4.

There is, however, a limit to the applied modulation. For m = 2 (Fig. 4.8c) we see that the
frequency response still has as sharp a cut-off as with the m = 1 case, yet there is a large dip in
the centre. As mentioned in Section 4.2.1, any increase in the phase modulation also increases
the delay in the temporal response; a major disadvantage when calculating temporal photon
correlations.

The results of Fig. 4.8 are promising as it shows that we can increase the bandwidth of
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(a) Zero phase modulation (m = 0).
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(b) π-phase modulation (m = 1).

−10 −8 −6 −4 −2 0 2 4 6 8 10

ω/|Ed|

0.0

0.2

0.4

0.6

0.8

1.0

|A
(ω

)|2
(a

.u
.)

κ/ |Ed| = 1

Nδω/ |Ed| = 1

Nδω/ |Ed| = 2

Nδω/ |Ed| = 4

(c) 2π-phase modulation (m = 2).
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Figure 4.8: Normalised frequency response of a single-mode with κ/|Ed| = 1 (grey, dots) and
multi-mode array filter with no phase modulation, (a), and π-phase modulation (m = 1), (b),
and 2π-phase modulation (m = 2), (c), with Nδω/|Ed| = 1 (blue, solid), Nδω/|Ed| = 2 (orange,
dashed), and Nδω/|Ed| = 4 (green, dot-dash). The other parameters are N = 80, ωc/|Ed| = 0.0,
and, for the multi-mode array filter, κ/|Ed| = 0.07.
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Figure 4.9: Frequency response comparison for a set bandwidth, Nδω/|Ed| = 4 for three
sets of values: N = 80, δω/|Ed| = 0.05 with κ/|Ed| = 0.1 (blue) and κ/|Ed| = 2 (orange), and
N = 5, δω/|Ed| = 0.8 with κ/|Ed = 0.05 (grey). The other parameters are N = 80, δω/|Ed| =
0.05,m = 1, and ωc/|Ed| = 0.

our filter further than a Lorentzian, without sacrificing frequency isolation. This is important
for two reasons: firstly, the wider bandwidth also improves the temporal response of the filter,
allowing for more accurate photon correlation calculations; secondly, if the spectral distribution
of the input light is Lorentzian, as it is for the systems we consider in this thesis, the filter must
be able to envelope as much of the spectral shape in frequency space as possible, while still being
able to reject any non target frequencies. If the filter bandwidth is too narrow compared to the
natural linewidth of the input light – and, thus, the lifetime of the cavity is much longer than
timescale of the source – the dynamics of the source system are now averaged over the lifetime
of the filter. The filtered photon correlations may no longer be indicative of the true photon
statistics of the source photons. We shall see this later with the two-level atom, in what has
been called the “thermalisation of the source” [83], a phenomenon first discussed by Nienhuis
in 1993 (see Ref. [39]).

From the impulse response of the filter, Eq. (4.23), we can expect to see a more rectangular
frequency response for smaller κ. If κ is too small with respect to the mode spacing, δω, then
there will be minimal overlap between each cavity mode and the collective response resembles
that of an array of individual modes. This is depicted in Fig. 4.9, as the grey, curve. By
increasing the number of modes, and thus decreasing the mode spacing, we can then allow for
much smaller values of κ, giving a much sharper frequency response, as we see in blue. If κ is
too large, however, the rectangular shape is replaced by a rounder, longer decaying response,
as shown by the orange curve in Fig. 4.9. For this thesis, then, we will consider a large number
of modes and, set the cavity mode width to κ = 2.5δω. The larger the value of N, the smaller
the mode spacing becomes, and thus we will also have a narrow cavity mode width.
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Resonance Fluorescence
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5 The Dressed States of The Mollow Triplet

We now move our focus to the first system of interest: the resonantly driven two-level atom.
The two-level atom provides an excellent scenario with which to test the multi-mode array filter
due to its relative simplicity and its long studied history. Early work, such as that of Mollow [1,
2], showed that, upon strong coherent driving, the power spectrum of the fluorescence splits intro
three components, yielding the spectrum now known as the “Mollow triplet” [3, 84]. Later work
by Tannoudji and others [4, 85–87] showed that this splitting phenomenon is due to transitions
amongst the atom’s “dressed states”, a result of the atom interacting with a strong quantised
electromagnetic field. This work, so early on in the field of quantum optics, led to a “greatly
renewed interest in the details of the interaction between light and resonant atomic systems”
[6].

Around the time Mollow’s papers were published, there were also investigations into the
quantum nature of the light emitted from a two-level atom. By studying the photon correla-
tions, it was shown that the two-level atom exhibits another purely quantum effect, namely
antibunching [9–11], where photons are emitted individually.

In this chapter we present a summary of the theory of the resonantly driven two-level atom.
We will first derive a mathematical model for investigating the two-level atom, following a similar
method that lead to the Jaynes Cummings model in 1963 [88], culminating in the optical Bloch
equations: a set of equations that allow us to easily calculate the evolution of this specific
system. We then introduce the atomic dressed states, which gives us an intuitive description
of the structure of the atomic spectrum. Following this we introduce the idea of second-order
coherence, which is an integral quantity of interest in this thesis. Finally, we consider the
system in the dressed-state picture and take the secular approximation, allowing us to derive
ideal second-order correlation functions for each of the separate frequency components of the
Mollow triplet. This will be our baseline for comparing the effectiveness of the multi-mode array
filter in the following chapter.

5.1 Two-Level Atom Interacting with the Quantised Radiation
Field

We begin by deriving a mathematical description of a two-level atom and its coupling to
the quantised electromagnetic field. Following the method as described by Loudon (Ref. [89],
Section 4.8), we make two important approximations: the dipole and rotating wave approxima-
tions.
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5.1.1 Atom-field Hamiltonian: Dipole interaction for a pseudo-spin system

The Hamiltonian of an atom interacting with the transverse component of the electromag-
netic field is given by

H = HF +HA +HI , (5.1)

where HF is the Hamiltonian describing the free field, given by Eq. (2.51), and

HA =
N∑
l=1

~ωl |l〉 〈l| (5.2)

is the free-energy Hamiltonian for a generalised N -level atom, with atomic states |l〉 and corre-
sponding eigenfrequencies ωl. In general the interaction between the electromagnetic field and
the atom consists of many multipolar expansion terms, however when we compare the magni-
tude of these interaction terms we find that the electric-dipole interaction is dominant (Ref. [90],
p. 132). We can assume that the wavelength of the electromagnetic field is much larger than
the size of the atom, and hence assume that the field is constant over the dimensions of the
atom. We then expand the spatial dependence of the electric field, Eq. (2.56), as

eik·r = eik·r0eik·(r−r0) = eik·r0
[
1 + ik · (r − r0) +O

(
|k · (r − r0) |2

)]
. (5.3)

Retaining only the first term, we therefore make the dipole approximation and neglect all terms
but the electric-dipole interaction so that the interaction Hamiltonian is

HI = −D ·E(r0), (5.4)

where E is the electric field at the position of the atomic nucleus, r0, given by Eq. (2.55), and

D =
N∑

l,m=1

|l〉 〈l| e (r − r0) |m〉 〈m| =
N∑

l,m=1

dlm |l〉 〈m| (5.5)

is the dipole operator, with e the charge of an electron, r the electron position operator, and
dipole matrix element

dlm = 〈l|e (r − r0) |m〉 . (5.6)

The complete Hamiltonian for a generalised N-level atom interacting with the quantised electro-
magnetic field in the dipole approximation is then:

H =
N∑
l=1

~ωl |l〉 〈l|+
∑
k,λ

~ωkr
†
k,λrk,λ +

∑
k,λ

N∑
l,m=1

~ |l〉 〈m|
[
glmk,λrk,λ +

(
glmk,λ

)∗
r†k,λ

]
, (5.7)

with coupling

glmk,λ = −i
√

ωk

2~ε0V
(dlm · êk,λ) eik·r0 . (5.8)

For our simple case we consider an atom with only two states: a ground state |g〉 and an
excited state |e〉, with respective eigenfrequencies ωg and ωe. The mechanics of a two-state
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system can be described using the same tools as spin-half systems, and so we find it useful to
treat the two-level atom as a pseudo-spin system. The atomic Hamiltonian, Eq. (5.2), can then
be written as

HA = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|

=
~
2
(ωg + ωe)1+

~
2
(ωe − ωg)σz, (5.9)

where
σz ≡ |e〉 〈e| − |g〉 〈g| . (5.10)

We can eliminate the constant term in Eq. (5.9) by setting the zero of energy at the midpoint
between the ground and excited states, and so write the Hamiltonian as

HA = ~
ωA

2
σz, ωA ≡ ωe − ωg. (5.11)

We also introduce the atomic raising and lowering operators,

σ+ = |e〉 〈g| , σ− = |g〉 〈e| , (5.12)

which have commutation relations:

[σ+, σ−] = σz, [σz, σ±] = ±2σ±. (5.13)

The complete Hamiltonian, Eq. (5.7), for the two-level atom is then

H = ~
ωA

2
σz +

∑
k,λ

~ωkr
†
k,λrk,λ+

∑
k,λ

~σ−
(
gk,λrk,λ + g∗k,λr

†
k,λ

)
+ ~σ+

(
gk,λrk,λ + g∗k,λr

†
k,λ

)
, (5.14)

where we have redefined the coupling constant, Eq. (5.8), as

gk,λ = ggek,λ = −i
√

ωk

2~ε0V
(dge · êk,λ) eik·r0 . (5.15)

5.1.2 Rotating wave approximation and coherent driving

Equation (5.14) contains interaction terms on two different time scales. We ultimately
aim to drop any rapidly oscillating terms, and thus make the rotating wave approximation by
introducing the unitary evolution operator

U(t) = e
1
i~ (HA+HF )t = e−iωktr

†
k,λrk,λe−i

ωAt

2
σz . (5.16)

The Hamiltonian in the interaction picture then becomes
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H̃I(t) = U†(t)HIU(t) =
∑
k,λ

~σ−
(
gk,λrk,λe

−i$Ct + g∗k,λr
†
k,λe

i$Rt
)

+ ~σ+
(
gk,λrk,λe

−i$Rt + g∗k,λr
†
k,λe

i$Ct
)
, (5.17)

with the rotating and counter-rotating frequencies,

$R = ωk − ωA, $C = ωk + ωA. (5.18)

Over the shortest time scale of the system evolution, the rapidly oscillating terms with fre-
quencies $C will average to zero. The rotating wave approximation consists in neglecting these
counter-rotating terms, leaving the slower rotating terms with frequency $R. After transform-
ing back into the Schrödinger picture we obtain the complete Hamiltonian for a two-level atom
interacting with the electric field in the dipole and rotating wave approximations:

H = ~
ωA

2
σz +

∑
k,λ

~ωkr
†
k,λrk,λ +

∑
k,λ

~
(
g∗k,λσ−r

†
k,λ + gk,λσ+rk,λ

)
. (5.19)

As the focus of this thesis is filtering the fluorescence of driven quantum systems, we therefore
assume the atom is pumped at resonance by a coherent driving laser of frequency ωA. This can
be accounted for by taking all but one mode of the electric field in the vacuum state, and a single
mode, k, with single polarisation to be in a highly populated coherent state |βe−iωAt〉, with field
amplitude β. We therefore replace the annihilation and creation operators in Eq. (5.19) with
complex amplitudes (see Ref. [90], p. 139):

rk → βe−iωAt, r†k → β∗eiωAt. (5.20)

Dropping the constant energy and vacuum terms, we are now left with the time-dependent
Hamiltonian

H = ~
ωA

2
σz + ~

Ω

2

(
σ−e

iωAt + σ+e
−iωAt

)
, (5.21)

where, adopting a phase convention, we have defined the driving amplitude, also known as the
Rabi frequency, as a real value with

Ω ≡ 2|gk,λβ|. (5.22)

5.1.3 Master equation for spontaneous emission

Energy loss in a two-level atom can occur via spontaneous emission which can be treated
using a master equation approach. We may follow a similar method as with Eq. (3.26), how-
ever there are some key differences. The photons emitted via spontaneous emission can be
in any direction in three-dimensional space, hence the summations over the reservoir mode in
Eqs. (3.22) now involve a summation over wavevector directions, k, and polarisations, λ. The
pseudo spin operators also have different commutation relations than the bosonic operators.
With these differences in mind, we follow through the same procedure as before to obtain the
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master equation for a radiatively damped two-level atom (see Ref. [75], Section 2.2.1 for details):

dρ

dt
=

1

i~
[HA, ρ] +

γ

2

(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
, (5.23)

where γ is the atomic excited state decay rate.
While the Hamiltonian, Eq. (5.21), contains time-dependent terms, we may transform into

the interaction picture to eliminate the time dependence and the master equation still holds.
Hence we may replace the Hamiltonian in Eq. (5.23) with the time-independent form,

HA = ~
Ω

2
(σ− + σ+) . (5.24)

5.1.4 Optical Bloch equations

Expanding the density operator for the two-level atom explicitly in terms of the atomic
states,

ρ = ρgg |g〉 〈g|+ ρge |g〉 〈e|+ ρeg |e〉 〈g|+ ρee |e〉 〈e| , (5.25)

we see a correspondence between the density operator matrix elements and the averages of the
pseudo-spin operators: 〈σz〉 = ρee − ρgg, 〈σ+〉 = ρge, and 〈σ−〉 = ρeg. The master equation,
Eq. (5.23), can then be rewritten in terms of the operator averages:

d

dt
〈σ−〉 = −

γ

2
〈σ−〉+ i

Ω

2
〈σz〉, (5.26a)

d

dt
〈σ+〉 = −

γ

2
〈σ+〉 − i

Ω

2
〈σz〉, (5.26b)

d

dt
〈σz〉 = iΩ〈σ−〉 − iΩ〈σ+〉 − γ (〈σz〉+ 1) , (5.26c)

or, in matrix form,
d

dt
〈σ〉 = M (σ)〈σ〉+B, (5.27)

where

〈σ〉 =

〈σ−〉〈σ+〉
〈σz〉

 , B =

 0

0

−γ

 , M (σ) =

−
γ
2 0 iΩ2
0 −γ

2 −iΩ2
iΩ −iΩ −γ

 . (5.28)

These equations, also known as the optical Bloch equations due to their relation to the equations
for a spin-half system in a magnetic field [91], provide a concise and simple method for calculating
appropriate quantities, such as the population inversion of the atom. They are also very useful
when considering two-time correlation functions – as we will see in the following sections –
owing to the direct implementation of the quantum regression equations, as in Eqs. (3.46) and
(3.47).

Another useful aspect of using the operator moment equations is the ease with which
the steady-state moments can be calculated. For matrix based differential equations, such
as Eq. (5.27), the steady-state vector can be found with a simple matrix inversion:

〈σ〉ss = lim
t→∞
〈σ(t)〉 = −

[
M (σ)

]−1
B, (5.29)
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Figure 5.1: Eigenstates of the uncoupled atom-field Hamiltonian, Eq. (5.19). For weak driving,
there is a degeneracy in the energy levels of the uncoupled atom-field system. As the driving
strength is increased, this degeneracy is lifted allowing for more transitions.

which, in this case, gives a steady-state solution,

〈σ〉ss =

〈σ−〉ss〈σ+〉ss
〈σz〉ss

 =
1

γ2 + 2Ω2

−iγΩiγΩ

−γ2

 . (5.30)

5.1.5 Dressed states

The bare atomic states, |g〉 and |e〉, are eigenstates of the bare Hamiltonian, Eq. (5.11), yet
they are not eigenstates of the full Hamiltonian, Eq. (5.24), when coherent driving is introduced.
If we write the Hamiltonian in matrix form we can then diagonalise it to find the eigenstates
and corresponding eigenenergies:

HA |u〉 = +~
Ω

2
|u〉 , |u〉 = 1√

2

(
|e〉+ |g〉

)
, (5.31a)

HA |l〉 = −~
Ω

2
|l〉 , |l〉 = 1√

2

(
|e〉 − |g〉

)
. (5.31b)

These eigenstates – also known as the atomic dressed states – are a direct result of the interaction
of the atomic field with a quantised electromagnetic field. Briefly returning to the uncoupled
atom-field Hamiltonian, Eq. (5.19), we see there is a degeneracy in the |g, n〉 and |e, n− 1〉 states
for low driving amplitudes, as shown on the left-hand side of Fig. 5.1. As the driving amplitude
is increased, this degeneracy is lifted and we see a splitting of the dressed-state energies. We
have, however, assumed the field to be in a highly populated coherent state, hence the Fock
state hierarchy is not resolvable. Therefore we drop the Fock state labelling in Eqs. 5.31, even
though we have kept them in Fig. 5.1.

Later on in this chapter we will move into a secular approximation by rewriting our atomic
operators, Eqs. (5.10) and (5.12), in terms of these dressed states. This allows us to derive
analytical expressions for the first- and second-order correlation functions, as defined in the
following sections, for each of the possible dressed state transitions in the limit of very strong
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driving, Ω� γ. These results will then act as a benchmark to evaluate the effectiveness of the
single-mode and multi-mode array filters.

5.2 Fluorescence Spectrum of the Two-Level Atom

The dressed state picture may tell us what frequencies we expect to be emitted by the atom,
but it does not tell us the entire story. Here we will investigate the fluorescence, or power,
spectrum of the atom. To do so, we must first introduce the first-order correlation function, a
quantity which tells us how correlated an electric field is at two different times. Then, using
the Wiener-Khinchin theorem, we present the coherent and incoherent spectra of the emitted
light.

5.2.1 First-order coherence

We introduce the general first-order correlation function,

G(1)(r, t; r′, t′) = 〈E(−)(r, t)E(+)(r′, t′)〉, (5.32)

which quantifies the correlation of the electric field at two different points, r and r′, and at
two different times, t and t′ (see Ref. [78], p. 221). In this thesis we are only interested in the
temporal coherence, that is we consider a solitary point detector, where r = r′, such that only
the temporal dependence remains. Defining the time delay variable τ ≡ t− t′, we introduce the
normalised first-order temporal correlation function:

g(1)(τ) =
〈E(−)(t)E(+)(t+ τ)〉√

〈E(−)(t)E(+)(t)〉〈E(−)(t+ τ)E(+)(t+ τ)〉
, (5.33)

which is bounded by the range
|g(1)(τ)| ≤ 1. (5.34)

If the field is completely coherent then |g(1)(τ)| = 1 for all τ , whereas the field becomes com-
pletely uncorrelated as τ →∞, g(1)(τ →∞)→ 0 (see Ref. [92], p. 73).

5.2.2 The Mollow triplet

Following on from Section 3.1.4 – Eqs. (3.32 - 3.34) in particular – we may rewrite the
generalised correlation function, Eq. (5.33), entirely in terms of the atomic operators, σ+ and
σ−. Similar to the steps involved for calculating the master equation, the summation of reservoir
modes now includes a summation over wavevectors and polarisations. Following the method as
outlined by Carmichael (Ref. [75], Section 2.3.1), we indeed find:

E(+)(r, t) = E(+)
s (r, t) ∝ σ−(t− r/c), (5.35)

where, with the reservoir in thermal equilibrium at zero temperature, the free field makes no
contribution to the normal-ordered correlation functions. We therefore introduce the normalised
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first-order correlation function for a resonantly driven two-level atom:

g(1)(t, τ) =
〈σ+(t)σ−(t+ τ)〉√

〈σ+σ−(t)〉〈σ+σ−(t+ τ)〉
, (5.36)

or, in the steady-state limit,

g(1)ss (τ) = lim
t→∞

g(1)(t, τ) =
〈σ+(0)σ−(τ)〉ss
〈σ+σ−〉ss

. (5.37)

As mentioned in Section 3.2, the power spectrum of the field can be calculated from the
Fourier transform of the first-order correlation function, which is a form of the Wiener-Khinchin
theorem [93, 94]:

S(ω) =
1

2π

∫ ∞

−∞
eiωτg(1)ss (τ)dτ. (5.38)

In the steady state there exists quantum fluctuations described by the operators (Ref. [75],
Section 2.3.4):

∆σ± = σ± − 〈σ±〉ss, (5.39a)

∆σz = σz − 〈σz〉ss. (5.39b)

We therefore decompose the power spectrum, as defined by Eq. (5.38), into coherent and inco-
herent components, corresponding to the elastic and inelastic scattering of light from the atom
(Ref. [73], pp. 207-208):

S(ω) = Scoh(ω) + Sinc(ω), (5.40)

where

Scoh(ω) =
1

2π

1

〈σ+σ−〉ss

∫ ∞

−∞
eiωτ 〈σ+〉ss〈σ−〉ssdτ, (5.41a)

Sinc(ω) =
1

2π

1

〈σ+σ−〉ss

∫ ∞

−∞
eiωτ 〈∆σ+(0)∆σ−(τ)〉ssdτ. (5.41b)

We find that the ratio of the coherent and incoherent intensities is

Iinc
Icoh

=
〈∆σ+∆σ−〉ss
〈σ+〉ss〈σ−〉ss

=
2Ω2

γ2
, (5.42)

hence for weak driving, Ω � γ, coherent scattering dominates, and for strong driving, Ω � γ,
incoherent scattering dominates.

We plot the first-order correlation, Eq. (5.37), in Fig. 5.2 in the weak and strong driving
regimes, for Ω/γ = 0.01, and Ω/γ = 5. In the weak driving limit, there is a small effect
of the weak Rabi frequency in the short time-scale (τ � γ), yet in the later times it decays
exponentially. In the strong driving regime we see a frequency term occurring, known as Rabi
oscillations; the atomic population is oscillating between the excited and ground states.

For the two-level atom the first-order correlation function is entirely real, resulting in a
symmetric power spectrum. We see this in Fig. 5.3, where the incoherent power spectrum of
the correlation functions in Fig. 5.2 are calculated. For the weak drive regime, the atomic
spectrum is Lorentzian, situated at the atomic frequency, ωA, and with fullwidth γ. As the
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Figure 5.2: Normalised first-order correlation function, g(1)ss (τ) for the driven two-level atom
for Ω/γ = 0.1 (left) and Ω/γ = 7.5 (right). When driven on resonance, the correlation function
is entirely real and hence the spectra will be symmetrical.
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Figure 5.3: Incoherent power spectra of the driven two-level atom for Ω/γ = 0.1γ (left) and
Ω/γ = 7.5 (right), calculated by taking the Fourier transform of the correlation functions shown
in Fig. 5.2.
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drive strength is increased, side peaks emerge at ωA±Ω, giving shape to the well known Mollow
triplet [1, 2]. These side-peaks are a direct result of transitions amongst the atom’s dressed
states [4], Eqs. (5.31), as illustrated in Fig. 5.1.

5.3 Photon Correlations and Antibunching

In this section we will introduce the second-order correlation function, the concept of second-
order coherence and what it means for light to be “bunched” and “antibunched”.

5.3.1 Second-order coherence

The second-order correlation function is a measure of the fluctuations in the intensity of a
field (Ref. [78], p. 229), and is defined classically as

g(2)(t, τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉

, (5.43)

where I(t) is the intensity of the field at time t. If we consider a statistically stationary classical
source, such that 〈I(t)〉 = 〈I(t+ τ)〉 = 〈I〉, then Eq. (5.43) can be written as

g(2)(τ) =
〈I〉2 + 〈I〉〈∆I(t)〉+ 〈I〉〈∆I(t+ τ)〉+ 〈∆I(t)∆I(t+ τ)〉

〈I〉2

= 1 +
〈∆I(t)∆I(t+ τ)〉

〈I〉2
, (5.44)

where we have introduced the field fluctuation, ∆I(t) = I(t) − 〈I〉, as in Eq. (5.39). We note
here that the fluctuation 〈∆I(t)〉 = 〈∆I(t + τ)〉 = 0 by definition. Equation (5.44) shows two
distinct properties: firstly, in the long time limit, τ → ∞, the intensity fluctuations become
completely uncorrelated with

g(2)(τ →∞) = 1; (5.45)

and secondly, for zero time delay the correlation is bounded by

g(2)(τ = 0) =
〈I2〉
〈I〉2

≥ 1. (5.46)

One of the first distinctly quantum optical experiments was the Hanbury Brown and Twiss
experiment [95–97], though it was initially motivated by stellar interferometry. This experiment
investigated the intensity correlations of light emitted from distant stars by splitting the light
through a 50:50 beam splitter and correlating the time between detections in each arm, as
depicted in Fig. 5.4a. While the technology has changed since the original Hanbury Brown and
Twiss papers, the principle of correlating light with two detectors has remained and forms the
basis of this work.

If the field is in a coherent state, the correlation function is unity for all time, g(2)(τ) = 1. In
the case of thermal light there are larger fluctuations in the intensity, resulting in an increased
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Figure 5.4: Schematic of a Hanbury Brown and Twiss device (a) and the g(2)(τ) functions (b)
for bunched (blue, solid), coherent (orange, dashed), and antibunched (green, dot-dash) light.

Figure 5.5: Temporal distribution of photon detector “clicks” for bunched, coherent, and
antibunched light.



58 5 The Dressed States of The Mollow Triplet

initial correlation, with (Ref. [73], p. 40)

g(2)(τ = 0) = 1 + |g(1)(τ = 0)|2 = 2. (5.47)

From this result we see that there is a high probability for detecting a photon at detector
2 at the same time a photon is detected at the first detector. From here we can make two
important distinctions: bunched light, where photons are detected in clusters, with g(2)(0) > 1;
and coherent light, where photons are detected at random intervals, with g(2)(0) = 1. These two
classes of photon statistics are represented in Figs. 5.4b and 5.5, as well as the third classification
which we will introduce in the following section.

5.3.2 Antibunching

We return now to familiar quantum notation, and introduce the quantum mechanical second-
order correlation function for a stationary field, as first discussed by Glauber in 1963 [8]:

g(2)(t, τ) =
〈E(−)(t)E(−)(t+ τ)E(+)(t+ τ)E(+)(t)〉
〈E(−)E(+)(t)〉〈E(−)E(+)(t+ τ)〉

. (5.48)

As with the first-order correlation function, we may write this in terms of the source operators
for the field scattered by the two-level atom, which, in the steady-state limit, is:

g(2)ss (τ) = lim
t→∞

g(2)(t, τ) =
〈σ+(0)σ+σ−(τ)σ−(0)〉ss

〈σ+σ−〉2ss
. (5.49)

From the optical Bloch equations, Eqs. (5.26), we may derive an analytic solution (see Ref. [75],
Section 2.3.5 for details),

g(2)(τ) = 1− e−
3γ
4
τ

[
cosh (δτ) +

3γ

4δ
sinh (δτ)

]
, (5.50)

where

δ =

√(γ
4

)2
− Ω2. (5.51)

From Eq. (5.50) we see that this correlation has an initial value of zero, which is impossible for
a classical source. This entirely quantum effect gives rise to the third classification of photon
statistics that we consider: antibunching [9, 12, 98]. In the case of this driven two-level system,
the atom can only store a single quantum of energy and must be excited again before emitting
another photon, hence only single-photon emissions occur. In Fig. 5.6, we plot the normalised
second-order correlation function for the two-level atom in the weak and low driving regimes.
For weak driving, as the atom emits a photon, the state population slowly returns back to its
steady state. For stronger driving, the atomic state oscillates between the ground and excited
states. As with the first-order correlation function, we again see this in the atomic photon
correlations.

It has also been shown that, in the weak driving regime, antibunching is a result of the
generation of squeezed resonance fluorescence [99, 100]. This has been proven again in the
recent experimental works of Hanschke et al. [35] and Phillips et al. [34].
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Figure 5.6: Normalised second-order correlation function, g(2)ss (τ) of the driven two-level atom
for Ω/γ = 0.1 (left) and Ω/γ = 5 (right).

5.4 Dressed State Correlation Functions

In this section we will examine the evolution of the two-level atom in terms of the dressed
states by making the secular approximation [23]. We may rewrite the original master equation
in terms of dressed state operators, giving us separate decay terms for each of the possible
dressed state transitions: |u〉 → |u〉 and |l〉 → |l〉; |u〉 → |l〉; and |l〉 → |u〉. With this expanded
master equation, we then derive first- and second-order correlation functions for each of the
dressed-state transitions, giving us ideal benchmarks with which to compare our frequency
filtered correlations in the following chapter.

5.4.1 Dressed state optical Bloch equations

Assuming the atom is strongly driven, with Ω� γ, and side-peaks in the Mollow spectrum
are sufficiently separated in frequency space, we may then make a secular approximation and
rewrite the evolution of the system, Eq. (5.23), in terms of dressed-state operators. Rearranging
Eqs. (5.31), we write the bare atomic states in terms of the dressed states:

|g〉 = 1√
2

(
|u〉+ |l〉

)
, |e〉 = 1√

2

(
|u〉 − |l〉

)
. (5.52)

This allows us to rewrite the atomic raising and lowering operators, Eq. (5.12), as

σ± =
1

2

(
|u〉 〈u| − |l〉 〈l|

)
∓ 1

2

(
|u〉 〈l| − |l〉 〈u|

)
. (5.53)

We then transform into a rotating frame with unitary evolution operator

U(t) = e
1
i~HAt, (5.54)
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and hence the Lindblad master equation becomes

dρ̃

dt
=
γ

2

(
2σ̃−(t)ρ̃(t)σ̃+(t)− σ̃+(t)σ̃−(t)ρ̃(t)− ρ̃(t)σ̃+(t)σ̃−(t)

)
, (5.55)

with density operator
ρ̃(t) = U†ρ̃(t)U(t), (5.56)

and decay operators

σ̃±(t) = U†(t)σ̃±(t)U(t) =
1

2

(
|u〉 〈u| − |l〉 〈l|

)
∓ 1

2

(
eiΩt |u〉 〈l| − e−iΩt |l〉 〈u|

)
, (5.57)

Expanding the decay operators in the dressed state representation, we then make the secular
approximation by dropping any rapidly oscillating terms so that the master equation in the
interaction picture now becomes

dρ̃

dt
=
γ

8

(
2 |u〉 〈u| ρ̃(t) |u〉 〈u| − |u〉 〈u| ρ̃(t)− ρ̃(t) |u〉 〈u|

)
+
γ

8

(
2 |l〉 〈l| ρ̃(t) |l〉 〈l| − |l〉 〈l| ρ̃(t)− ρ̃(t) |l〉 〈l|

)
+
γ

8

(
2 |u〉 〈l| ρ̃(t) |l〉 〈u| − |l〉 〈l| ρ̃(t)− ρ̃(t) |l〉 〈l|

)
+
γ

8

(
2 |l〉 〈u| ρ̃(t) |u〉 〈l| − |u〉 〈u| ρ̃(t)− ρ̃(t) |u〉 〈u|

)
− γ

8

(
|u〉 〈u| ρ̃(t) |l〉 〈l|+ |l〉 〈l| ρ̃(t) |u〉 〈u|

)
. (5.58)

Transforming back out of the interaction picture, we introduce the dressed-state operators for
a driven two-level atom,

σD− = |l〉 〈u| , σD+ = |u〉 〈l| , σDz = |u〉 〈u| − |l〉 〈l| , (5.59)

and write the master equation in the secular approximation:

dρ

dt
= −iΩ

2
[σDz , ρ] +

γ

8

(
2σD−ρσ

D
+ − σD+σD−ρ− ρσD+σD−

)
+
γ

8

(
2σD+ρσ

D
− − σD−σD+ρ− ρσD−σD+

)
+
γ

4

(
σDz ρσ

D
z − ρ

)
. (5.60)

Here we can identify three main processes: a decay from the dressed state |u〉 to the state |l〉;
a decay from the state |l〉 to the state |u〉; and, from the last term in Eq. (5.60), an atomic
dressed state “dephasing”, which does not change the dressed state populations.

From Eq. (5.60) we may write coupled moment equations for the dressed-state “spin” op-
erators, resulting in a set of equations similar to the optical Bloch equations, Eqs. (5.26), but
now decoupled from each other:

d

dt
〈σD− 〉 = −

(
3γ

4
+ iΩ

)
〈σD− 〉, (5.61a)
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d

dt
〈σD+ 〉 = −

(
3γ

4
+ iΩ

)
〈σD− 〉, (5.61b)

d

dt
〈σDz 〉 = −

γ

2
〈σDz 〉. (5.61c)

These have simple solutions:

〈σD− (t)〉 = 〈σD− (0)〉e−
(

3γ
4
+iΩ

)
t
, (5.62a)

〈σD+ (t)〉 = 〈σD+ (0)〉e−
(

3γ
4
−iΩ

)
t
, (5.62b)

〈σDz (t)〉 = 〈σDz (0)〉e−
γ
2
t. (5.62c)

5.4.2 First-order correlation functions in the secular approximation

In this strong driving limit, we expect each peak of the Mollow triplet, Fig. 5.3, to be well
separated resulting in three distinct Lorentzians. Each peak is then linked to of the dressed
state operators: the left-peak is the result of the transition |l〉 → |u〉 with operator σD+ ; the
central peak is a result of the degenerate transitions |u〉 → |u〉 and |l〉 → |l〉 which we may
associate with the dephasing term, σDz ; and the right-peak is a result of the transition |u〉 → |l〉
with operator σD− .

With these three operators and the quantum regression equations, Eqs. (3.47), we may
derive first-order correlation functions for each of these three dressed-state transitions:

g
(1)
centre(τ) =

〈σDz (0)σDz (τ)〉
〈σDz σDz 〉ss

= e−
γ
2
τ , (5.63a)

g
(1)
left(τ) =

〈σD− (0)σD+ (τ)〉
〈σD−σD+ 〉ss

= e
−
(

3γ
4
−iΩ

)
τ
, (5.63b)

g
(1)
right(τ) =

〈σD+ (0)σD− (τ)〉
〈σD+σD− 〉ss

= e
−
(

3γ
4
+iΩ

)
τ
. (5.63c)

Taking the Fourier transforms of these three correlation functions, we see there are indeed three
distinct peaks,

Scentre(ω) =
1

2π

γ

(γ/2)2 + ω2
, (5.64a)

Sleft(ω) =
1

2π

3γ/2

(3γ/4)2 + (ω +Ω)2
, (5.64b)

Sright(ω) =
1

2π

3γ/2

(3γ/4)2 + (ω − Ω)2
, (5.64c)

that is, the central peak is a Lorentzian with half-width γ/2, and the side-peaks are Lorentzians
with half-width 3γ/4, situated at ω = ±Ω.

5.4.3 Second-order correlation functions in the secular approximation

We follow the same procedure now for the second-order auto-correlation functions for each
frequency component. In the complete picture we know that the light emitted from the atom
is completely antibunched. When looking at each component individually, however, we see a
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(a) (b) (c)

Figure 5.7: Photon emissions from the atomic dressed states and their orderings for (a)
central peak photons, (b) a left-peak photon followed by a right-peak photon, and (c) a right-
peak photon followed by a left-peak photon.

difference. For the central peak photons, due to the degenerate dressed state transitions, the
light is entirely second-order coherent, with auto-correlation function

g
(2)
centre(τ) =

〈σDz (0)σDz σ
D
z (τ)σDz (0)〉

〈σDz σDz 〉2ss
= 1. (5.65)

Left- and right-peak photons exhibit behaviour similar to the two-level atom, in that the light
from these transitions is also antibunched, as can be seen in the auto-correlation functions:

g
(2)
left(τ) =

〈σD− (0)σD−σ
D
+ (τ)σD+ (0)〉

〈σD−σD+ 〉2ss

=
1

2

1

〈σD−σD+ 〉ss
− 1

2

〈σD− (0)σDz (τ)σD+ (0)〉
〈σD−σD+ 〉2ss

= 1− 2〈σD−σDz σD+ 〉sse−
γ
2
τ

= 1− e−
γ
2
τ , (5.66a)

and
g
(2)
right(τ) =

〈σD+ (0)σD+σ
D
− (τ)σD− (0)〉

〈σD+σD− 〉2ss
= 1− e−

γ
2
τ . (5.66b)

While the auto-correlation tells us the conditional likelihood of detecting an emission from
a transition some time τ after a first detection, the cross-correlation allows us to look at two
different transitions. As an example, if we consider detecting a left-peak photon at τ = 0, we
see there is an increased probability of detecting a right-peak photon at the same time, with
cross-correlation function

g
(2)
left→right(τ) =

〈σD+ (0)σD−σ
D
+ (τ)σD− (0)〉

〈σD+σD− 〉ss〈σD−σD+ 〉ss
= 1 + e−

γ
2
τ = g

(2)
right→left(τ). (5.67)

This is to be expected as, shown in Fig. 5.7, the ordering of the dressed transitions must conserve
the total energy of the photons absorbed from the driving field.
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Similarly, for a side-peak to central-peak correlation function, for example the right-peak,
we have second-order coherence, with

g
(2)
right→centre(τ) =

〈σD+ (0)σDz σ
D
z (τ)σD− (0)〉ss

〈σD+σD− 〉ss〈σDz σDz 〉ss
= 1. (5.68)

While the equations in this section have been derived in the secular approximation, in the
next chapter we will attempt to recover the same results using a frequency filter approach.
As previously mentioned, Eqs. (5.65 - 5.67) will then be used to compare with the calculated
frequency filtered photon correlations.
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6 Multi-Mode Frequency Filtered Mollow Triplet

Historically, there has been great interest in measuring and calculating photon correlations
from the driven two-level atom; of particular interest are photon correlations from each compo-
nent of the Mollow triplet [14, 15, 19, 24, 27]. With the recent developments in quantum dot
technology, there has also been a surge in interest in frequency-filtered photon correlations of
the Mollow triplet [34, 35, 38, 101, 102], due to their use as single-photon sources, generators
of two-photon pulses, as well as entangled photons [103–107], all of which have applications in
quantum computing and cryptography.

Much of the research has used either tunable single-mode cavities as the frequency filter, or
the technique developed by del Valle et al. [43], which employs N tunable two-level atoms. Both
methods, however, still result in Lorentzian profile filters being used. The standard approach,
then, considers the case where the side-peaks of the Mollow triplet are well separated, i.e.,
Ω � γ. This approach works well for the two-level atom, but cannot be guaranteed for any
general system. We therefore wish to demonstrate the effectiveness of the multi-mode array
filter in the case where the side-peaks are separated, but not extremely so.

The focus of this chapter is to use the resonantly driven two-level atom as a “test scenario”
for the multi-mode array filter. With the long studied history of the Mollow triplet – and the
derived ideal correlation functions, Eqs. (5.65) - (5.67) – we can explore the effect that different
filtering parameters have on the effectiveness of the filter, much like in Chapter 4.

We begin this chapter by introducing the mathematical model upon which we base our
calculations. This model extends the open cascaded system theory in Section 3.3 to include
the two-level atom and the multi-mode array filter. We then calculate the frequency-filtered
incoherent power spectra of the single-mode and multi-mode array filters, comparing them both
against the unfiltered Mollow triplet. We then move towards the main quantity of interest of
this thesis: frequency-filtered photon correlations. We calculate and compare both auto- and
cross-correlation functions, highlighting the superior performance of the multi-mode array filter,
relative to the single-mode Lorentzian filter.

6.1 Frequency Filtering Model for Resonance Fluorescence

Having already introduced the multi-mode array filter and the concepts behind the reso-
nantly driven two-level atom, we now apply the cascaded open quantum systems theory to these
two systems.

6.1.1 Hamiltonian and master equation

To model the frequency filtering of the two-level atom, we treat the atom as the source
subsystem of a cascaded open system. In particular, the atomic fluorescence is assumed to be
uniformly distributed amongst, or cascaded evenly into, all of the cavities of the multi-mode
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array filter. We therefore start with the general cascaded system’s Hamiltonian, Eq. (3.66),
and replace the source system with the driven atomic Hamiltonian, Eq. (5.24), and the target
subsystem with the multi-mode array, Eq. (4.16). Summing over the cavity modes, the total
Hamiltonian for our atom-filter cascaded system is then (in a frame rotating at the atomic
transition frequency):

H = ~
Ω

2
(σ− + σ+) + ~

N∑
j=−N

∆ωja
†
jaj +

i~
2

N∑
j=−N

(
E∗j ajσ+ − Eja

†
jσ−

)
, (6.1)

where
∆ωj = (ω0 + jδω)− ωA (6.2)

is the frequency detuning of the jth mode from atomic resonance, with mode frequency spacing
δω, and

Ej =
√

γκ

2N + 1
eimjπ/N (6.3)

is the mode-dependent coupling, as in Eq. (4.18).
The atomic resonance fluorescence is evenly coupled into an array of 2N +1 tunable single-

mode cavities, as depicted in Fig. 6.1a. We model each mode with two lossy mirrors, both with
loss rates κ/2, resulting in two separate decay channels: reflection of the input field and trans-
mission from the cavity mode through the first mirror is directed towards one photon detector,
while transmission through the cavity mode is directed towards another photon detector (see
Fig. 6.1b). We therefore expand the cascaded systems master equation, Eq. (3.68), to allow for
both decay channels, i.e.,

dρ

dt
=

1

i~
[H, ρ] +

κ

2

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)
+

1

2

(
2CjρC

†
j − C

†
jCjρ− ρC†

jCj

)
, (6.4)

with cascaded decay operator:

Cj =

√
γ

2N + 1
eimjπ/Nσ− +

√
κaj . (6.5)

We may expand out each of the terms in Eq. (6.4) to give us a less compact, yet more intuitive
master equation,

dρ

dt
= −iΩ

2
[σ+ + σ−, ρ] +

γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

− i
N∑

j=−N

∆ωj [a
†
jaj , ρ] + κ

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)

−
N∑

j=−N

Ej
(
a†jσ−ρ− σ−ρa

†
j

)
−

N∑
j=−N

E∗j (ρσ+aj − ajρσ+) . (6.6)
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(a)

(b)

Figure 6.1: Full schematic of the multi-mode filtered two-level atom (a) with detail of the
decay channels of the jth cavity (b). The phase-shifted fluorescence is sent into a ring cavity
with two perfectly reflecting mirrors at the bottom. The reflection (and transmission) from the
input mirror and the transmission from the output mirror are sent to separate detectors. As
we are interested in frequency-filtered correlations, our results only focus on the transmission
channel.
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6.1.2 Density operator and moment equation calculations

In order to calculate the frequency-filtered correlations from the multi-mode array filter, we
take the total output field, Eq. (3.34), to be the sum of the output fields of all of the cavity
modes,

E(+)
source(z, t) =

N∑
j=−N

√
~ωj

2ε0Ac

√
2κaj(t− z/c). (6.7)

With frequencies in the optical range (THz), we may assume that the total width of the filter,
2Nδω, is much smaller than the central frequency, ω0. We may then replace the ωj with ω0, so
that the total field is proportional to the sum over all mode annihilation operators,

E(+)
source(z, t) ∝ Ā(t− z/c) (6.8)

where

Ā =
A√

2N + 1
, A =

N∑
j=−N

aj , (6.9)

is the collective mode annihilation operator, the quantum mechanical analogue of Eq. (4.22).
We then define the normalised second-order correlation function for the multi-mode frequency
filter,

g
(2)
filtered(τ) =

〈A†(0)A†A(τ)A(0)〉ss
〈A†A〉2ss

. (6.10)

Using only the master equation, Eq. (6.6), and the appropriate form of the quantum regres-
sion equations, Eq. (3.45), we can numerically calculate solutions to this second-order correlation
function. There are, however, some difficulties to this method. Firstly, the Hilbert, or Fock,
space of single-mode cavities is infinitely large, and one must make a truncation at some point
to be able to perform any calculations. For this specific method of filtering we allow for a large
number of cavities modes, each with their own Fock space. Even by truncating each individual
cavity mode to a maximum of only two photons, the dimensions of the total Hilbert space,
and thus the density operator, grows rapidly. The calculations then prove to be extremely
demanding, such that we were limited to the case of N = 20 on our current computer hardware.

Fortunately there is a much more efficient method which allows for these same calculations
to be performed in seconds. Instead of calculating the two-time correlation functions through
the master equation and density operator, we instead use a series of operator moment equations.
Expanding the numerator of Eq. (6.10) as

〈A†(0)A†A(τ)A(0)〉 =
N∑

j,k=−N

〈A†(0)a†jak(τ)A(0)〉, (6.11)

we see that this two-time correlation function has initial condition

〈A†(0)a†jak(τ = 0)A(0)〉 = 〈A†a†jakA〉ss =
N∑

l,m=−N

〈a†l a
†
jakam〉ss. (6.12)

From the quantum regression equations, Eq. (3.47b) in particular, to calculate Eq. (6.11) we
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need to solve the equation of motion for the operator average 〈a†jak〉. With the master equation,
Eq. (6.6), we make use of Eq. (2.22) and the cyclic property of the trace,

tr [XY Z] = tr [ZXY ] = tr [Y ZX] , (6.13)

to find that the expectation of the operator a†jak evolves as:

d
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(
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†
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†
kak
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σ−ρ

}
= − [2κ− i (∆ωj −∆ωk)] 〈a†jak〉 − E

∗
j 〈akσ+〉 − Ek〈a

†
jσ−〉. (6.14)

This operator moment is dependent only on itself and the two moments 〈akσ+〉 and 〈a†jσ−〉.
Following the same procedure, we find that these operator moments evolve as:

d

dt
〈ajσ−〉 = −

(γ
2
+ κ+ i∆ωj

)
〈ajσ−〉+ i

Ω

2
〈ajσz〉, (6.15a)

d

dt
〈ajσ+〉 = −

(γ
2
+ κ+ i∆ωj

)
〈ajσ+〉 − i

Ω

2
〈ajσz〉 −

1

2
Ej (〈σz〉+ 1) , (6.15b)

d

dt
〈ajσz〉 = iΩ〈ajσ−〉 − iΩ〈ajσ+〉 − γ〈ajσz〉 − γ〈aj〉+ Ej〈σ−〉. (6.15c)

Here we see a familiar structure appearing, namely the optical Bloch equations, Eqs. (5.26) and
(5.27). From the structure of these equations, we can then arrange Eqs. (6.15) in matrix form,

d

dt

〈ajσ−〉〈ajσ+〉
〈ajσz〉

 =
[
M (σ) − (κ+ i∆ωj)1

]〈ajσ−〉〈ajσ+〉
〈ajσz〉

+

 0

−1
2Ej (〈σz〉+ 1)

−γ〈aj〉+ Ej〈σ−〉

 , (6.16)

where M (σ) is the evolution matrix of the optical Bloch equations, Eq. (5.28), and 1 is the unit
matrix. As with Eq. (6.14), these moment equations are also only dependent on lower order
terms. To calculate 〈a†jak〉 we only need six sets of equations:

d

dt
〈σ〉 = M (σ)〈σ〉+

 0

0

−γ

 , (6.17a)

d

dt
〈aj〉 = − (κ+ i∆ωj) 〈aj〉 − Ej〈σ−〉, (6.17b)

d

dt
〈a†j〉 = − (κ− i∆ωj) 〈aj〉 − E∗j 〈σ+〉, (6.17c)
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〈σ〉 〈aj〉, 〈a†j〉

〈ajσ〉, 〈a†jσ〉 〈ajak〉, 〈a†ja
†
k〉, 〈a

†
jak〉

〈ajakσ〉, 〈a†ja
†
kσ〉, 〈a

†
jakσ〉 〈a†jakal〉, 〈a

†
ja

†
kal〉

〈a†jakalσ〉, 〈a
†
ja

†
kakσ〉 〈a†ja

†
kalam〉

Figure 6.2: The operator moments couple in a cascaded scheme, where lower-order moments
can be solved independently from the higher-order moments. The highlighted colours indicate
the order of which these equations can be solved, due to the number of filter mode operators,
while the arrows indicate the coupling into higher-order modes.

d

dt
〈ajσ〉 =

[
M (σ) − (κ+ i∆ωj)1

]
〈ajσ〉+

 0

−1
2Ej (〈σz〉+ 1)

−γ〈aj〉+ Ej〈σ−〉

 , (6.17d)

d

dt
〈a†jσ〉 =

[
M (σ) − (κ− i∆ωj)1

]
〈a†jσ〉+

−
1
2E

∗
j (〈σz〉+ 1)

0

−γ〈a†j〉+ E∗j 〈σ+〉

 , (6.17e)

d

dt
〈a†jak〉 = − [2κ− i (∆ωj −∆ωk)] 〈a†jak〉 − E

∗
j 〈akσ+〉 − Ek〈a

†
jσ−〉. (6.17f)

The unidirectional coupling of the atomic fluorescence into the filter modes introduces a
simple structure into the coupled moment equations; higher-order operator moments are en-
tirely dependent on lower-order moments. If we instead consider a bidirectional coupling, like
that of the Jaynes-Cummings Hamiltonian, we would be unable to derive a closed set of equa-
tions, with second-order operator moments appearing in even the optical Bloch equations. This
simple structure then provides a very efficient method to calculate them, both numerically and
analytically – if one so desires. As there is no influence of the filter cavity modes on the evo-
lution of the atom, the optical Bloch equations are the source of all of the dynamics of the
system, and can easily be solved as a 3 × 3 matrix system. The structure of the coupling,
seen in Eqs. (6.17), continues through all combinations of atomic and cavity mode operators.
We depict this coupling in order of calculations in Fig. 6.2, up to the fourth-order moment,
〈a†ja

†
kalam〉.

In Appendix A we present the complete set of coupled moment equations, up to fourth-order,
as needed to calculate the frequency-filtered spectra and photon correlations in the following
sections. To calculate the steady-state correlations presented in the following sections, we first
need to calculate the moment equation steady states. Routines written in Fortan90 compute
these steady states using LAPACK matrix inversion routines [108]. With the initial conditions
calculated, the time dependence is then numerically integrated using the Runge-Kutta 4th Order
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method [109, 110]. Unless otherwise stated, a time step of γdt = 10−3 was chosen such that
numerical errors were minimised, without increasing computational time unnecessarily.

6.2 Frequency Filtered Power Spectrum

Now that we have introduced the explicit model for the frequency-filtered two-level atom,
we can now calculate the correlation functions of interest. Before we calculate any second-
order correlation functions, we will first investigate the filtered power spectrum of the atomic
fluorescence.

As previously discussed, the fluorescence is largely coherent and monochromatic in the weak-
driving regime, and thus we are more interested in the strong driving regime. Thus, we choose
a driving strength such that the sidebands of the Mollow triplet are separated enough to be
distinguishable, yet close enough that we will see an improvement of the multi-mode array filter.
As mentioned in the opening of this chapter, we wish to test the filter against the simpler case
of a two-level atom first, and then move towards systems where the emitted frequencies may
not be so well separated. Therefore, for the following sections we set Ω/γ = 5π.

6.2.1 Frequency-filtered first-order correlation function

Following on from Eqs. (5.37) and (6.10), the normalised first-order correlation function for
the multi-mode array filter in the steady-state limit is

g
(1)
filtered(τ) =

〈A†(τ)A(0)〉ss
〈A†A〉ss

, (6.18)

where

〈A†(τ)A(0)〉ss =
N∑

j=−N

〈a†j(τ)A(0)〉ss. (6.19)

Decomposing the filtered power spectrum into coherent and incoherent scattering components,
the frequency-filtered incoherent power spectrum is then given by

Sinc(ω) =
1

2π

1

〈A†A〉ss

∫ ∞

−∞
eiωτ

N∑
j=−N

〈∆a†j(τ)∆A(0)〉ssdτ. (6.20)

As this is a first-order correlation function, we are able to solve for the time dependence
by solving only two sets of equations, Eqs. (6.17a) and (6.17c) (See Section A.2 for the explicit
correlation function equations to solve). The Bloch equations are a simple 3× 3 set of coupled
equations, and thus can easily be solved analytically; therefore, we are also able to derive an
analytic expression for the correlation function, Eq. (6.19). The first-order correlation function
for the multi-mode filtered two-level atom is then (see Appendix B for details):

〈∆a†j(τ)∆A(0)〉ss =
E∗jC(1)

γ
2 − (κ− i∆ωj)

e−
γ
2
τ +

E∗jC(2)

3γ
4 + δ − (κ− i∆ωj)

e
−
(

3γ
4
+δ

)
τ
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+
E∗jC(3)

3γ
4 − δ − (κ− i∆ωj)

e
−
(

3γ
4
−δ

)
τ
+ C

(4)
j e−(κ−i∆ωj)τ , (6.21)

where δ is defined by Eq. (5.51), and the coefficients are

C(1) =
1

2

N∑
k=−N

(
〈∆σ−∆ak〉ss + 〈∆σ+∆ak〉ss

)
, (6.22a)

C(2) =
1

4δ

N∑
k=−N

[
γ − 4δ

4

(
〈∆σ−∆ak〉ss − 〈∆σ+∆ak〉ss

)
+ iΩ〈∆σz∆ak〉ss

]
, (6.22b)

C(3) =
−1
4δ

N∑
k=−N

[
γ + 4δ

4

(
〈∆σ−∆ak〉ss − 〈∆σ+∆ak〉ss

)
+ iΩ〈∆σz∆ak〉ss

]
, (6.22c)

C
(4)
j =

N∑
k=−N

[
〈∆a†j∆ak〉ss −

E∗jC(1)

γ
2 − (κ− i∆ωj)

−
E∗jC(2)

3γ
4 + δ − (κ− i∆ωj)

−
E∗jC(3)

3γ
4 − δ − (κ− i∆ωj)

]
, (6.22d)

with
〈∆X∆Y 〉ss = 〈XY 〉ss − 〈X〉ss〈Y 〉ss. (6.23)

While we have not given explicit expressions for the steady-state moments, and thus we can-
not give a complete expression for the incoherent power spectrum, we can see four important
frequency terms in Eq. (6.21): e−γτ/2 corresponds to the central peak of the Mollow triplet;
e−(3γ/4±δ)τ correspond to the left- and right-side peak; and e−(κ−i∆ωj)τ corresponds directly to
the output field of the jth filter mode. As we encountered in the derivation of the frequency
response, Eq. (4.27), a complete analytic expression for Eq. (6.19) is too difficult to derive.

6.2.2 Filtering out non-target peaks

Using Eq. (6.21), with numerically obtained steady states, we calculate the incoherent power
spectrum of the multi-mode array filter for increasing halfwidths; κ for the single-mode filter,
N = 0, and Nδω for the multi-mode array, N > 0. Following on from Section 4.2.4, we choose
a large number of modes, N = 80, and set the mode halfwidth to κ = 2.5δω, such that the
frequency response of the multi-mode array filter has a sharp cut-off. In the following section,
however, we will more closely investigate the effects of the filter parameters.

We first look at the response of a standard single-mode cavity filter in Fig. 6.3, for increasing
values of κ/γ = 1, 2, 4, 8, and 16. With the filter resonant with the central peak, Fig. 6.3a, and
the right peak, Fig. 6.3b, we see two distinct features of the single-mode filtering. Firstly,
when the bandwidth is too small compared to the linewidth of the target fluorescence – γ for
the central peak and 1.5γ for the side-peaks – the output resonances become too narrow; that
is, narrower than the natural linewidths. This can be seen more clearly in Fig. 6.3a for the
two narrow bandwidths, κ/γ = 1 (blue) and κ/γ = 2 (orange). Secondly, as the bandwidth
of the filter increases, the filter becomes unable to distinguish between target and non-target
frequencies. As discussed earlier, in the limit κ→∞, the “filtered” output field tends towards
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(a) Central Peak (∆ω0/γ = 0)
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(b) Right Peak (∆ω0/γ = 5π)
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Figure 6.3: Frequency-filtered incoherent power spectrum, Eq. (6.20), of a single-mode filter
(N = 0), for a range of increasing halfwidths, κ. The filter resonance is tuned to the central
peak (a) and the right peak (b) of the Mollow triplet, which is also plotted as a comparison
(grey, dotted). The driving amplitude is Ω/γ = 5π.
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(a) Central Peak (∆ω0/γ = 0)
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(b) Right Peak (∆ω0/γ = 5π)
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Figure 6.4: Frequency-filtered incoherent power spectrum, Eq. (6.20), of a multi-mode array
filter (N = 80), for a range of increasing halfwidths, Nδω. The filter resonance is tuned to
the central peak (a) and the right peak (b) of the Mollow triplet, which is also plotted as a
comparison (grey, dotted). The other parameters are Ω/γ = 5π, κ = 2.5δω,m = 1.
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the input field, as the filter cavity allows any frequency to pass through. We see this clearly
in Fig. 6.3b, where the filter is centred on the right peak (∆ω0 = Ω), yet there is an emerging
central peak as the bandwidth increases.

Turning our attention to the multi-mode array filter, Fig. 6.4, we can already see a re-
markable improvement in its ability to isolate frequencies when compared to the single-mode
Lorentzian filter. Compared to the halfwidths shown in Fig. 6.3, the multi-mode array filter is
able to effectively isolate the target peak for all but the largest halfwidth, Nδω/γ = 16. The
single-mode filter, however, still shows evidence of other peaks for a halfwidth as small as 2γ,
as can be seen by the orange curve in Fig. 6.3.

Looking at smaller bandwidths, we see a different story. As the filter bandwidth decreases,
and the frequency isolation improves, the multi-mode array filter rejects even more non-target
light. When the filter halfwidth is equal to the atomic linewidth, κ = γ and Nδω = γ (the blue
curve in Figs. 6.3 and 6.4, respectively), we see that the spectral shape is much thinner than
the bare atomic resonance. The multi-mode array filter is now rejecting frequencies that make
up the target peak, therefore we expect the filter field to no longer be completely representative
of the target transitions.

6.3 Second-Order Auto-Correlation Function

Figures 6.3 and 6.4 show exactly what we expected from the multi-mode array filter, that
is, the multi-mode array filter is able to isolate frequencies much more effectively than a single-
mode filter. Having shown this in the frequency domain, we now move into the time domain
and towards the main quantity of interest for this thesis: frequency-filtered photon correlations.

In this section we present calculations of the filtered second-order correlation function,
Eq. (6.10), for a variety of different parameters, with the goal of finding a regime that re-
sults in correlation functions as close to the secular approximations as possible. Unlike the
previous section, we do not have an analytic expression to work with. We therefore present
numerical calculations of the second-order correlation functions.

6.3.1 Fine tuning the multi-mode array filter

There are three important aspects of the multi-mode array filter that affect its performance:
the effective halfwidth, Nδω; the size of the phase modulation, m; and the relationship between
the number of modes, N, and the width of each individual mode, κ.

We have already discussed the effect of the relationship between the cavity mode width and
the number of modes in Section 4.2.4. We therefore consider, for the multi-mode array filter, a
large number of modes, N = 80, with a cavity mode width κ = 2.5δω, where the mode spacing,
δω, depends on the chosen effective halfwidth. In this section, then, we will discuss the effects
of the halfwidths and the phase modulation on the filtered photon correlations.

Varying the halfwidth

In Figs. 6.5 and 6.6, we plot sets of correlation functions for increasing filter halfwidths
of the single-mode and multi-mode filters, respectively. Similar to the filtered power spectra,
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(a) Central Peak (∆ω0/γ = 0)

(b) Right Peak (∆ω0/γ = 5π)

Figure 6.5: Frequency-filtered g(2)(τ) of a single-mode filter (N = 0), for a range of increasing
halfwidths, κ. The filter resonance is tuned to the central peak (a) and the right peak (b) of the
Mollow triplet, with comparisons against the auto-correlation functions derived in the secular
approximation (black, dotted), Eq. (5.65) (a) and Eq. (5.66b) (b). The driving amplitude is
Ω/γ = 5π.
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(a) Central Peak (∆ω0/γ = 0)

(b) Right Peak (∆ω0/γ = 5π)

Figure 6.6: Frequency-filtered g(2)(τ) of the multi-mode array filter (N = 80), for a range of
increasing filter halfwidths, Nδω. The filter resonance is tuned to the central peak (a) and the
right peak (b) of the Mollow triplet, with comparisons against the auto-correlation functions
derived in the secular approximation (black, dotted), Eq. (5.65) (a) and Eq. (5.66b) (b). The
other parameters are Ω/γ = 5π,m = 1, and κ = 2.5δω.
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Figure 6.7: Mean absolute difference, Eq. (6.24), between the dressed state correlation func-
tions and the single-mode (left) and multi-mode (right) filtered correlation functions of the right
(blue, solid), ∆ω0/γ = 5π, and central (green, dashed), ∆ω0/γ = 0, filtered peaks. The driving
amplitude is Ω/γ = 5π, and the multi-mode array parameters are N = 80,m = 1, κ = 2.5δω.
The correlation functions were calculated to a maximum time of γτ = 10.

we see an immediate improvement in the multi-mode array filter over the single-mode filter in
terms of its ability to isolate frequencies. For the smaller filter halfwidths of the single-mode
filter, there are still oscillations visible in the correlations of the central- and right-filtered peaks,
Figs. 6.5a and 6.5b, respectively. These oscillations, at the Rabi frequency Ω, are indicative of
the poor frequency isolation of the single-mode filter. Again, the multi-mode array filter fares
much better in isolating frequencies of interest, with more evidence in Fig. 6.6. Only for the
largest halfwidth shown, Nδω/γ = 16, are there visible oscillations, which is to be expected
with a full bandwidth that encompasses the entire Mollow triplet.

When comparing the filtered correlation functions with the ideal dressed state functions
(black, dashed curves), Eqs. (5.65) and (5.66b), we see that both filter setups produce filtered
photon correlations that follow the dressed state functions closely, with the multi-mode array
filter producing more accurate results. We can quantify this by considering the mean difference
between the filtered photon correlations and the dressed state correlations,

Mean Difference = |g(2)dressed(τ)− g
(2)
filtered(τ)|. (6.24)

To calculate the mean difference, the correlation functions were calculated up to a maximum
time of γτ = 10. Except for the smallest of filter halfwidths, as we will discuss later, this is
ample time for the correlations to tend closely to their steady state. As we are calculating
the normalised second-order correlation functions, they will always tend to unity in the limit
τ →∞, and thus we do not need to calculate for longer times to compare mean differences.

Figure 6.7 shows this difference for the single- and multi-mode filters, when resonant with
photons of the central and right peaks, for a range of filter halfwidths. In the small halfwidth,
κ/γ,Nδω/γ < 1, and large halfwidth, κ/γ,Nδω/γ > 10, regimes, the filtered correlation func-
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Figure 6.8: Initial correlation value of the single-mode (left) and multi-mode (right) filtered
correlation functions of the right (blue, solid), ∆ω0/γ = 5π, and central (green, dashed),
∆ω0/γ = 0, filtered peaks. The driving amplitude is Ω/γ = 5π, and the multi-mode array
parameters are N = 80,m = 1, κ = 2.5δω.

tions deviate greatly from those derived in the secular approximation. In the intermediate
regime, however, the multi-mode filtered photon correlations deviate much less than the single-
mode. The markers in Fig. 6.7 indicate the halfwidth at which the lowest mean difference
occurs; for the single-mode filter this occurs at κ/γ = 2.4, where the mean difference is ≈ 0.01

for both filtered peaks. This is only a narrow range as, for larger halfwidths, the Lorentzian filter
allows even more bare atomic fluorescence to pass through, thus giving strong Rabi oscillations.
For the multi-mode array filter, there is a much wider range of acceptable halfwidths due to
the almost rectangular frequency response. Not only is the mean difference in the intermedi-
ate halfwidth range lower for the multi-mode array filter – 0.004–0.006 for the filtered central
and right peak, respectively – but the smallest difference occurs at a much wider halfwidth –
Nδω/γ = 7.5 and 9.5 for the filtered central and right peak, respectively.

There is another important metric with which to measure the filter’s ability, namely, the
initial value of the correlation function; definitions for bunched, coherent, and antibunched light
all arise from the initial correlation value. For the smaller halfwidths, we saw that the filtered
spectra were much narrower than the bare atomic Lorentzian. We see a similar effect in the time
domain, too, where the behaviour of the filtered correlation functions diverges from the dressed
state correlation functions – see Fig. 6.8. This is more noticeable with the multi-mode array
filter where, for the central peak, and Nδω/γ = 1.0 (the yellow curve in Fig. 6.6a), the initial
correlation value has increased when compared to the correlation function for Nδω/γ = 2.0.
Similarly, for the right peak (Fig. 6.6b), the initial value is also higher. The effect that narrow
linewidths have on the filtered correlation functions will be discussed in the following section.

As with Fig. 6.7, markers indicate the halfwidth – in the intermediate range – where the
initial correlation value is closest to that of the secular approximation: g(2)(0) = 1 for the
central peak and g(2)(0) = 0 for the right peak. For the single-mode array, the closest value
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when resonant with the right peak is g(2)filtered(0) ≈ 0.25 at κ/γ ≈ 1.4; and g
(2)
filtered(0) ≈ 1.0 at

κ/γ ≈ 5.5 for the central peak. While the initial value for the central peak seems promising for
the single-mode filter, we know that a halfwidth of 5.5 is already too large, given the visible
Rabi oscillations for κ/γ = 4.0 in Fig. 6.5a. The multi-mode array filter, however, has initial
values that lie much closer to the secular approximation. For the right peak, g(2)filtered(0) = 0.0632

for Nδω/γ = 5.95, and for the central peak, g(2)filtered(0) = 1.1270 for Nδω/γ = 5.4.
Again, as the halfwidth increases even further, and the filtered correlation function ap-

proaches that of the direct atomic fluorescence, the initial value tends towards zero, i.e., perfect
antibunching. While this may seem agreeable when filtering the right peak, we know that this
indicates different underlying mechanics than with the dressed state picture.

Unfortunately we cannot pick a single multi-mode array halfwidth that will give optimal
results for both the initial correlation value and the overall trend. For a more accurate overall
correlation, a slightly larger halfwidth is more favourable, as the transitory behaviour of the
filter’s temporal response decays faster for larger halfwidths. For a more accurate initial value,
a slightly narrower halfwidth is preferable as it allows for more precise frequency isolation. We
will therefore consider the two regimes, and motivations, separately.

Varying the phase modulation

So far we have only really considered a maximum phase modulation of π, with m = 1. From
the characteristics of the sinc function, Fig. 4.5, and the frequency response of the multi-mode
array filter, Fig. 4.8, we expect m = 1 to be an optimal value. If m < 1, the tails of the
frequency response extend too far; if m > 1, we introduce a large temporal delay, as well as a
dip in the centre of the frequency response.

Figure 6.10 shows the mean difference and g(2)filtered(0) for a range of phase modulations. Here
the effective halfwidths have been chosen such that the mean difference or initial value have
been optimised for the given driving amplitude, Ω/γ = 5π. If there is no phase modulation,
m = 0, we see large deviations in both the overall behaviour and the initial value. This can also
be seen in Fig. 6.9, where we plot the temporal evolution of the filtered correlation function. It
is only when the phase modulation increases, and thus the frequency response becomes more
rectangular, that the filtered correlation functions approach the ideal dressed state functions.

The closest initial correlation value for both resonance cases lies at exactly m = 1, with
g
(2)
filtered(0) = 1.12696 and 0.06215 for the central and right peaks, respectively. There is, however,

a slight difference when considering the overall mean difference. When resonant with the right
peak, the smallest mean difference is ≈ 0.0056 for m = 0.8, while for m = 1 the mean difference
is ≈ 0.0064. This is only a small improvement in the overall mean difference, especially when
compared to the closer initial value for m = 1. We will therefore consider a phase modulation
of m = 1, as we have done thus far.

Frequency isolated photon correlations

Having now discussed the various parameter regimes of the multi-mode array, we now
make a final comparison of the frequency-filtered photon correlations between the single-mode
Lorentzian filter and the multi-mode array filter. We do note that the parameters chosen are
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Figure 6.9: Multi-mode filtered correlation function for a few different values of m, for the
filtered central peak (a) and right peak (b). The filtered correlations are compared against the
dressed state correlation functions (grey, dotted), Eqs. (5.65) (a) and (5.66b) (b). The other
parameters are Ω/γ = 5π,N = 80, κ = 2.5δω.



82 6 Multi-Mode Frequency Filtered Mollow Triplet

0 1 2 3

m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
M

ea
n

D
iff

er
en

ce
Right Peak

Central Peak

0 1 2 3

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
(2

)
fi
lt

e
re

d
(0

)

Right Peak

Central Peak

Figure 6.10: Mean difference between the filtered and dressed state correlation functions
(left) and initial correlation value (right) for different values of phase modulation. The filter
is resonant with the right (blue, solid), ∆ω0/γ = 5π, and central (green, dashed), ∆ω0/γ = 0,
peaks. For the central peak, the filter halfwidths are Nδω/γ = 7.4 (left) and Nδω/γ = 5.65
(right). For the right peak, the filter halfwidths are Nδω/γ = 9.35 (left) and Nδω/γ = 5.95
(right). The other parameters are Ω/γ = 5π,N = 80, κ = 2.5δω.

effective for the given sideband splitting, or driving amplitude. With that in mind we present
correlation functions, in Fig. 6.11, calculated with halfwidths that result in a more accurate over-
all result: κ/γ = 2.5 for the single-mode filter, and Nδω/γ = 7.4 and 9.35 for the multi-mode
array filter when resonant with the central and right peaks, respectively.

As previously mentioned, we have set the driving amplitude as Ω/γ = 5π such that the
sidebands of the Mollow triplet are separated enough to distinguish them, but still in the limit
where the long-reaching tails of a Lorentzian filter will have a noticeable effect.

Considering first a suitable bandwidth for the single-mode filter, the top figures of Figs. 6.11a
and 6.11b, we see that the single-mode filtered correlations do follow the trend of the dressed
state correlation functions. Unfortunately for the single-mode filter, the orange dashed curve,
we still do see quite visible Rabi oscillations, indicative of its poor ability to isolate target
frequencies. For the same halfwidth, the multi-mode array filter produces a much smoother
filtered correlation function, yet the frequency response is still too narrow to capture most of
the target peak. The initial transitory behaviour of the single-mode filter also takes much longer
to settle.

Increasing the halfwidth to Nδω/γ = 7.4 for the central peak, and 9.35 for the right peak,
we see an immediate improvement in the multi-mode filtered photon correlations. Non-target
photons have been almost completely rejected, with only very small amplitude oscillations
visible, and the initial transitory behaviour decays quickly.
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Figure 6.11: Frequency-filtered photon correlations of the central (a) and right (b) peaks for
the single- (orange, dashed) and multi-mode array (blue, solid) filters. The filtered correlations
are compared against the dressed state correlation functions (grey, dotted), Eqs. (5.65) (a) and
(5.66b) (b). Halfwidths have been chosen to give a more accurate overall correlation function.
The other parameters are Ω/γ = 5π,N = 80, κ = 2.5δω
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Figure 6.12: Initial value of the filtered correlation function, g(2)filtered(0), for the single-mode
filter (N = 0) when resonant with the right (blue, solid) and central (green, dashed) peak. The
driving amplitude is Ω/γ = 5π.

6.3.2 Filtering within the peak

In the previous section we established that, as the filter halfwidth increases, more of the
atomic fluorescence passes through the filter and the filtered photon correlations tend towards
the bare atomic correlations. There is, then, some intermediate halfwidth where the filter is able
to isolate a target peak, such that the filtered correlations closely capture the expected behaviour
as derived in the secular approximation. We could see in Figs. 6.7 and 6.8, however, that smaller
halfwidths – smaller than the bare atomic linewidth – caused the correlation functions to evolve
into something different.

In Fig. 6.12 we show the initial value of the filtered correlation function, g(2)filtered(τ = 0), when
resonant with the central (the blue, solid curve) and the right peak (the orange, dashed curve),
with varying filter halfwidth. Even with the single-mode filter, we can see drastic changes in the
correlation functions as the filter halfwidth decreases. These results agree with those discussed
by Carreño et al. [83] and Gonzalez et al. [46, 48] for the strongly driven two-level atom.
Similar results have been also found recently in the weak driving regime (see Refs. [34, 35]).
With the extension of the multi-mode array filter, we can, in fact, reveal even richer correlations
due to the improved frequency isolation. From here on, then, we will discuss these correlations
from the context of the multi-mode array filter, for which the corresponding results are shown
in Fig. 6.13.

We highlight five filter halfwidths in Fig. 6.13 corresponding to different regions of photon
correlations: Nδω/γ = 100.0 (i), 14.5 (ii), 5.68 (iii), 0.0685 (iv), and 0.00001 (v). We plot the
temporal correlation functions of the central peak for these halfwidths in Fig. 6.14. Starting
with the largest halfwidth in region (i), the filtered photon correlations are almost perfectly
antibunched, as there is almost no suppression of the atomic fluorescence for such an extreme
filter width.
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Figure 6.13: Initial value of the filtered correlation function, g(2)filtered(0), for the multi-mode
array filter when resonant with the right (blue, solid) and central (green, dashed) peak. The
other parameters are Ω/γ = 5π,N = 80,m = 1, κ = 2.5δω.

Figure 6.14: Frequency-filtered photon correlations of the central peak, ∆ω0/γ = 0.0, for the
regions of interest highlighted in Fig. 6.13. The halfwidths are Nδω/γ = 100 (i), 14.5 (ii), 5.68
(iii), 0.0685 (iv), and 0.00001 (v). The other parameters are Ω/γ = 5π,N = 80,m = 1, and
κ = 2.5δω.
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Skipping to region (v), the smallest halfwidth at Nδω/γ = 10−5, we see two very different
correlations for the central and right peak. Firstly, for the filtered central peak, we see that the
filtered correlation function is entirely second-order coherent, with g(2)filtered(τ) ≈ 1 in the purple
curve in Fig. 6.14. As the filter width becomes smaller and smaller, more and more of the
incoherent scattering is filtered out. The filter halfwidth then approaches that of the coherent
driving laser, which can be reasonably modelled as a Dirac delta function. For the filtered
right peak, as the filter halfwidth becomes increasingly smaller, the initial value tends towards
g
(2)
filtered(0) ≈ 2 (Fig. 6.13, orange dashed curve). From the perspective of the filter, the incoming

field – which is entirely Lorentzian – becomes broader and broader. This effect, known as the
‘thermalisation” of the source field [39, 41, 46], results in photon correlations resembling those
of a broadband thermal field, i.e.,

g
(2)
filtered(τ) = 1 + e−2Nδωτ . (6.25)

In region (ii), the filter halfwidth is approximately the same as the spacings between the
sidebands, Nδω ≈ Ω. When the filter is resonant with the central peak, the filter just en-
compasses all three peaks of the Mollow triplet; when resonant with the right peak, the filter
suppresses the left sideband. This emerging peak in the initial value, g(2)filtered(0), indicates a
region of strong bunching, and is only possible when filtered with a near rectangular filter. This
increase in bunching has in fact been reported by Kamide et al. in their study of frequency
filtering using the “eigenvalue decomposition method” [57]. In this study, Kamide et al. cal-
culated frequency-filtered correlation functions for Lorentzian, Gaussian, and pure rectangular
filters. For the ideal rectangular filter, this peak occurs when the halfwidth is exactly equal to
the splitting, Ω. In this region, the filter is able to detect cascaded emissions from the dressed
states, e.g., |u〉 → |u〉 → |l〉 or |l〉 → |l〉 → |u〉. Hence, the probability of detecting two photons
at zero time delay is increased, giving a higher initial correlation. The oscillations are still
visible in the temporal evolution, as seen in the green curve in Fig. 6.14, however, due to the
filter allowing multiple frequencies to pass through. When the filter is resonant with the right
peak, we see this happening at two halfwidths, Nδω ≈ Ω and 2Ω, simply because the spacing
between the right and central peaks is Ω, and the spacing between the right and left peaks is
2Ω.

The correlation functions in region (iii) are no different from what we saw in the previous
section. For a halfwidth of Nδω/γ = 5.68, the filter is able to reasonably isolate the target
peaks, and hence the auto-correlation functions resemble that of the dressed state correlations
derived in the secular approximation.

Finally, in region (iv), we see a large increase in the initial value, but only for the filtered
central peak. Before discussing how the filtered correlation functions change, however, it will be
helpful to first discuss how the intensities of the coherent and incoherent scattering of the filter
change with decreasing halfwidth. From Eq. (5.42), the ratio of the intensity of the incoherent
scattering and the coherent scattering from the multi-mode array filter is given by

Iinc
Icoh

=
〈∆A†∆A〉ss
〈A†〉ss〈A〉ss

=
〈A†A〉ss
〈A†〉ss〈A〉ss

− 1, (6.26)
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Figure 6.15: Intensity ratio of the filtered coherent and incoherent spectra for the multi-
mode (blue, solid), with N = 80, κ = 2.5δω, and the single-mode (orange, dashed) filter, when
resonant with the central peak, ∆ω0/γ = 0. The inset is zoomed in on the region where
Nδω ≈ Ω, where there is a clear deviation between the multi-mode and single-mode intensity
ratios. The single-mode ratio is calculated from Eq. (6.27), while the multi-mode ratio is
numerically calculated from the steady-state equations. The driving amplitude is Ω/γ = 5π.

which, for the single-mode filter resonant with the central peak, is

Iinc
Icoh

=
γ2 + 2Ω2

γ + 2κ

2κΩ2 + (γ + κ) (γ + 2κ)2

2Ω2 + (γ + κ) (γ + 2κ)
− 1. (6.27)

Figure 6.15 shows the intensity ratio for the multi-mode (blue, solid) and the single-mode
(orange, dashed) filter, when resonant with the central peak. When the halfwidth of the filter
is approximately in region (iii), we see that the intensity of the coherent scattering starts to
dominate. Here, then, the interference between the two possible decay paths, |u〉 → |u〉 and
|l〉 → |l〉, no longer holds, and thus the expected bunching of two possible transitions can be
detected [17, 83]. Figure 6.15 also shows a deviation in the intensity ratio for the multi-mode
array filter from the single-mode filter when Nδω, κ ≈ Ω.

6.4 Second-Order Cross-Correlation Function

Now we take the filtered frequency system one step further and introduce a second filter.
Tuning this second filter to a different transition allows us to cross-correlate two photons of
different frequencies.

6.4.1 A new Hamiltonian and master equation

To achieve this two-filter coupling, we can pass the atomic fluorescence through a 50:50 beam
splitter, with one arm coupling into the first filter, mode A, and the other arm into the second
filter, mode B. The Hamiltonian and master equation describing this system is essentially the
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Figure 6.16: The operator moments couple in a cascaded scheme, where lower-order moments
can be solved independently from the higher-order moments.

same as Eqs. (6.1) and (6.4), but with an extra coupling term. We then have the Hamiltonian

H = ~
Ω

2
(σ− + σ+) + ~

N∑
j=−N

∆ω
(a)
j a†jaj +

i~
2

N∑
j=−N

(
E(a)j

∗
ajσ+ − E(a)j a†jσ−

)

+ ~
N∑

j=−N

∆ω
(b)
j b†jbj +

i~
2

N∑
j=−N

(
E(b)j

∗
bjσ+ − E(b)j b†jσ−

)
, (6.28)

where
∆ω

(a)
j =

(
ω
(a)
0 + jδωa

)
− ωA, ∆ω

(b)
j =

(
ω
(b)
0 + jδωb

)
− ωA, (6.29)

are the frequency detunings, and

E(a)j =

√
γκa/2

2N + 1
eimjπ/N , E(b)j =

√
γκb/2

2N + 1
eimjπ/N , (6.30)

are the mode-dependent couplings, for filters A and B, respectively. We note here that, different
to Eq. (6.6), there is a factor of 1/2 due to the 50:50 splitting of the atomic fluorescence.
Similarly, the master equation is

dρ

dt
=

1

i~
[H, ρ] +

κa
2

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)

+
1

2

N∑
j=−N

(
2C

(a)
j ρC

(a)
j

†
− C(a)

j

†
C

(a)
j ρ− ρC(a)

j

†
C

(a)
j

)
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+
κb
2

N∑
j=−N

(
2bjρb

†
j − b

†
jbjρ− ρb

†
jbj

)

+
1

2

N∑
j=−N

(
2C

(b)
j ρC

(b)
j

†
− C(b)

j

†
C

(b)
j ρ− ρC(b)

j

†
C

(b)
j

)
, (6.31)

with cascaded decay operators:

C
(a)
j =

√
γ/2

2N + 1
eimjπ/Nσ− +

√
κaaj , C

(b)
j =

√
γ/2

2N + 1
eimjπ/Nσ− +

√
κbbj . (6.32)

For this two-filter system, we wish to correlate photons emitted from a mode, B, some time
τ after detection of an emission from mode A. We therefore introduce the frequency-filtered
second-order cross-correlation function:

g(2)cross(τ) =
〈A†(0)B†B(τ)A(0)〉ss
〈A†A〉ss〈B†B〉ss

, (6.33)

with

A =

N∑
j=−N

aj , B =

N∑
j=−N

bj . (6.34)

Just like with the single-filter system, we may derive a set of operator moment equations, allow-
ing a simple and efficient method to calculate the second-order two-time correlation function,

〈A†(0)B†B(τ)A(0)〉ss =
N∑

j,k=−N

〈A†(0)b†jbk(τ)A(0)〉ss. (6.35)

The complete set of coupled moment equations, which can be found in Appendix C, follow the
exact same structure as with the single-filter system, albeit with a few more equations needed.
This structure is also depicted as a flowchart in Fig. 6.16, with all the necessary operator
moments.

As there are multiple frequencies which we can investigate, we find it easier to redefine
Eq. (6.33) as

g(2)(α, 0;β, τ) =
〈A†(0)B†B(τ)A(0)〉ss
〈A†A〉ss〈B†B〉ss

, (6.36)

where α and β indicate the central resonance frequencies of filters A and B. For the two-level
atom, the simple structure of the atomic spectrum allows us to consider two identical filters.
We will therefore set κa = κb = κ and δωa = δωb = δω.

6.4.2 Photon-photon correlations of different transitions

The wider halfwidth of the filter gives a much faster temporal response, something we saw in
the auto-correlation functions, Fig. 6.11. Due to the finite temporal response of a cavity filter,
the cavity will inevitably have some effect on the output correlations [40, 41, 111]. A faster
temporal response causes this effect to quickly decay, so that the filtered correlation function
tends towards that of the secular approximation. We also saw that a wider filter halfwidth
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Figure 6.17: Initial cross-correlation value for the single- (left) and multi-mode array (right)
filtered cross-correlations for right-to-central (green, solid) peak and left-to-right (red, dashed)
peak detections.

resulted in a more accurate initial auto-correlation value, g(2)filtered(0), up to the limit where the
filter was unable to cleanly isolate the target frequency. Unfortunately this is not the case when
considering frequency-filtered cross-correlations. Figure 6.17 shows the initial value of the right-
to-central peak and right-to-left peak correlation functions. From the secular approximation,
we expect the right-to-left peak cross-correlation to be perfectly bunched, with an initial value
g(2)(+Ω, 0;−Ω, 0) = 2; we also expect the right-to-central peak to be second-order coherent,
with an initial value g(2)(+Ω, 0; 0, 0) = 1. As we see in Fig. 6.17, unlike the auto-correlation
functions, the initial values are no longer indicative of the expected behaviour from the secular
approximation.

That is, however, only true for the long-time behaviour. As discussed by Schrama et al.
in 1992 (Section III in Ref. [26, 27]), there are short-time, τ � γ−1, and long-time, τ � γ−1,
behaviours. In the long-time behaviour, the frequency-filtered correlation functions closely
follow the dynamics derived in Section 5.4.3. We see this in the filtered correlation functions
in Fig. 6.18, where, for τ > (Nδω)−1, the filtered correlations closely follow the dressed state
correlations (the grey dotted curve).

In the short-time behaviour, there are some more complicated dynamics occurring. For the
right-to-central peak correlation, the left figure in Fig. 6.18, there are two different cascade
decay pathways for the emission to occur: |u〉 → |l〉 → |l〉 and |u〉 → |u〉 → |l〉. With the
first pathway a side peak photon is detected first, and in the second pathway a central peak
photon is detected first. While these pathways correspond to two separate correlation functions,
g(2)(+Ω, 0; 0, τ) and g(2)(0, 0;+Ω, τ), they are both transitions starting in the upper state |u〉
and ending in the lower state |l〉, for different time orderings. At zero time delay, both time
orderings contribute equally to the initial correlation value and, in fact, cancel each other out,
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Figure 6.18: Multi-mode (blue, solid) and single-mode (orange, dashed) filtered cross-
correlation function for the right-to-centre peak transitions (left) and the right-to-left peak
transitions (right), compared against Eq. (5.68) and (5.66) (grey, dotted), respectively. The
other parameters are Ω/γ = 5π,N = 80, κ = 2.5δω, and m = 1.

which, from Eqs. (38) and (39) in Ref. [27], results in

g(2)(+Ω, 0; 0, τ) =
(
1− e−Kτ

)2
= g(2)(0, 0;+Ω, τ), (6.37)

where K is the halfwidth of the filter system [27] – in our notation, κ for the single-mode filter
and Nδω for the multi-mode array filter. We note here that Eq. 6.37 has been derived in the
limit where the sidebands of the Mollow triplet are well separated, Ω ≫ γ, such that each
frequency can be ideally isolated. Similarly, for the side-peak to side-peak cross-correlations,
g(2)(+Ω, 0;−Ω, τ) and g(2)(−Ω, 0;+Ω, τ), there is interference between the two different time
orderings, and the bunching is diminished. The resulting short-time behaviour, from Eq. (40)
in Ref. [26, 27], is

g(2)(±Ω, 0;∓Ω, τ) = e−
γ
2
τ − 1 + 2

(
1− 1

2
e−Kτ

)2

+
1

2
e−2Kτ . (6.38)

Figure 6.19 shows the single- and multi-mode filtered correlation functions for the two tran-
sitions. Comparing these results with the updated secular approximation correlation functions,
Eqs. (6.37) and (6.38), we see a close match. We also see similar results in experimental works
by Ulhaq et al., Shatokhin et al., and others [14, 15, 23, 29, 56, 102, 112]. Once again, the
sharper frequency response cut-off of the multi-mode array filter allows a more effective fre-
quency isolation over the single-mode filter, as seen by the diminished Rabi oscillations.

6.4.3 Cross-correlations outside the Mollow triplet peaks

We are not just limited to correlating photons from only the three peaks of the Mollow
triplet; we can set the resonance of each filter to be any frequency. In doing so, we are able
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Figure 6.19: Multi-mode (blue, solid) and single-mode (orange, dashed) filtered cross-
correlation function for the right-to-centre peak transitions (a) and the right-to-left peak tran-
sitions (b), compared against Eq. (6.37) and (6.38) (grey, dotted), respectively. The other
parameters are Ω/γ = 5π,N = 80, κ = 2.5δω, and m = 1.



6.4 Second-Order Cross-Correlation Function 93

-2Ω −Ω 0 Ω 2Ω

∆ω
(a)
0

-2Ω

−Ω

0

Ω

2Ω
∆
ω

(b
)

0

0.03

0.1

0.3

1.0

3.0

10.0

30.0

100.0

300.0

1000.0

3000.0

g
(2

)
(α
,0

;β
,0

)

Figure 6.20: Scan of initial cross-correlation values for varying central frequencies of two
single-mode filters. This figure is a reproduction of Fig. 1 in Ref. [102], using the model of this
thesis. For this figure, blue corresponds to antibunching with g(2)(0) < 1, red corresponds to
bunching with g(2)(0) > 1, and white corresponds to second-order coherence with g(2)(0) = 1.
The parameters are Ω/γ = 5π,N = 0, and κ/γ = 1.0.

to uncover more interesting, and potentially useful, photon correlations. In Figs. 6.20 and 6.21
we depict a landscape of initial correlation values, by varying the central frequency of filters A
and B of the single-mode and multi-mode array filters, respectively. Figure 6.20 in particular
closely resembles results from recent work, both experimental and theoretical [46–48, 51, 102].
For this discussion, however, we will focus on the multi-mode filtered results, Fig. 6.21.

In the regions of auto-correlation surrounding each peak, ∆ω(a)
0 ≈ ∆ω

(b)
0 , we see the expected

photon statistics; there are regions of strong antibunching, blue, surrounding the side peaks and
near second-order coherence around the central peak. As expected, we also see the expected
photon statistics surrounding the peaks in regions of cross-correlations; strong antibunching
when targeting the central peak and either side peak, and second-order coherence for the left-
to-right and right-to-left cross-correlations.

Things get interesting, however, when the filters are off resonant with the peaks. For the
auto-correlation diagonal line, we see two regions of bunching in between the side peaks and the
central peak. At the far edges of the cross-correlation, where ∆ω

(a)
0 = ±2Ω and ∆ω

(b)
0 = ∓2Ω,
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Figure 6.21: Scan of initial cross-correlation values for varying central frequencies of two
multi-mode array filters. For this figure, blue corresponds to antibunching with g(2)(0) < 1,
red corresponds to bunching with g(2)(0) > 1, and white corresponds to second-order coherence
with g(2)(0) = 1. The parameters are Ω/γ = 5π,Nδω/γ = 6.3 (N = 80, δω/γ = 0.07875), and
κ = 2.5δω.

we also see extreme bunching, with initial correlation value of ≈ 2000. Why is it, then, that we
see such intense bunching in these regions? There are two possible ways to explain this. The
first possibility takes a more mathematical approach. When thinking of the power spectrum of
the atomic fluorescence in these frequency ranges, we expect the field to be quite weak. When
we couple the field into filters off resonant with the peaks, the weak field will result in a very low
mean photon number inside each cavity, 〈A†A〉ss, 〈B†B〉ss � 1. Normalising by the product
of the two mean photon numbers will drastically increase the initial value of the normalised
correlation function.

The second approach considers a decay process known as the “leapfrog process” [30, 45, 46,
102]. This leapfrog process involves a simultaneous two-photon decay as two virtual photons,
with halfway energy depicted by the dashed line in Fig. 6.22a. Figure 6.22a also shows the
four possible two-photon decays that can occur: (i) ωA + Ω/2 and ωA − Ω/2, (ii) ωA − Ω/2

and ωA + Ω/2, and finally ωA ± Ω/2 and ωA ± Ω/2. We plot the auto- and cross-correlation
functions, g(2)(+Ω/2, 0;+Ω/2, τ) (blue solid curve) and g(2)(+Ω/2, 0; 0, τ) (orange dashed curve)
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Figure 6.22: “Leapfrog” decay processes in the dressed state picture (a), and corresponding
frequency-filtered cross-correlation functions (b). The processes labelled (i) and (ii) have an
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in Fig. 6.22b, where we indeed see the strong bunching of the simultaneously emitted photons.
The dynamics of these weak, yet experimentally measured [30], decay processes can only be
detected by frequency filtering.
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7 Two-Photon Resonance Fluorescence of a
Three-Level Ladder-Type Atom

Where the Mollow triplet of the driven two-level atom was a relatively simple case to test
the multi-mode array filter, we now turn our attention towards a slightly more complicated
model: a three-level ladder-type atom. With the two-level atom, the frequency spacing between
the sidebands was determined by the amplitude of the driving field; by simply increasing one
parameter, we can separate the sidebands enough that the single-mode filter with a sufficiently
large bandwidth will work well. This is not the case with the three-level ladder-type atom.
The addition of an extra dipole transition complicates the dynamics of the system, especially
with regards to the dressed states. The three-level ladder type atom offers a rich fluorescence
spectrum consisting of up to seven separate frequencies, with different intensities and linewidths.

We begin this chapter by extending the model of the two-level atom, and introducing the
model as used by Gasparinetti et al. [65, 66]. Initially interested in the three-level atom as a
source of single photons due to the cascaded decay, it was found that, upon strong coherent
excitation, the three-level atom can also produce strongly correlated bunches of photons [113–
117]. With the model determined, we present a summary of some of the key results of Ngaha
[118], i.e., the power spectrum and unfiltered photon correlations. Following Chapter 6, we then
couple the emission from the three-level atom into the multi-mode array filter, and compare
the frequency-filtered first- and second-order correlation functions against the single-mode filter.
Finally, we introduce a second filter and compare the second-order cross-correlations. While the
physical results will not differ greatly from those of Ngaha, we will see a remarkable improvement
in the frequency isolation of the multi-mode array filter.

7.1 Modelling The Three-Level Atom

Here we briefly introduce the Hamiltonian and master equation of the radiatively damped
three-level ladder-type atom, and derive expressions for the atomic dressed states when at two-
photon resonance.

7.1.1 Time independent Hamiltonian

Following on from the description of the two-level atom, we extend our model to that of a
three-level ladder type atom, with ground state |g〉, excited state |f〉, and intermediate state
|e〉, with energies ~ωg, ~ωf , and ~ωe, respectively. With coherent driving of the |g〉 ↔ |e〉 and
|e〉 ↔ |f〉 transitions, the Hamiltonian we consider is

HA = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f |+ ~
Ω

2

(
|g〉 〈e| eiωdt + |e〉 〈g| e−iωdt

)
+ ~ξ

Ω

2

(
|e〉 〈f | eiωdt + |f〉 〈e| e−iωdt

)
, (7.1)
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Figure 7.1: Energy level diagram of the three-level ladder-type atom. ωfg is the two-photon
resonance frequency, whereas ωeg and ωfe are the two single-photon resonances.

where
ξ =

dfe · ê∗k,λ
deg · ê∗k,λ

(7.2)

is the ratio of the dipole moments for the upper and lower dipole transitions, as defined by
Eq. (5.6), and Ω is the coherent driving amplitude of the lower transition, Eq. (5.22). As with
the two-level atom, we eliminate the time dependence in the Hamiltonian by transforming into
a rotating frame. We thus obtain the time-independent Hamiltonian for a driven three-level
ladder-type atom,

HA = −~
(α
2
+ δ
)
|e〉 〈e| − 2~δ |f〉 〈f |+ ~

Ω

2
(Σ+ +Σ−) , (7.3)

where, following Gasparinetti et al. (Refs. [65, 66]),

α = ωfe − ωeg (7.4)

is the anharmonicity of the |e〉 → |g〉 and |f〉 → |e〉 transitions, with ωij = ωi − ωj ,

δ = ωd −
ωfg

2
(7.5)

is the drive detuning from two-photon resonance, and

Σ− = |g〉 〈e|+ ξ |e〉 〈f | , Σ+ = |e〉 〈g|+ ξ |f〉 〈e| (7.6)

are the atomic lowering and raising operators. We depict the structure and excitation of the
three-level atom in Fig. 7.1.

If we wish to consider the case of two-photon resonance, with a cascaded decay from the
|f〉 to |g〉, we must assume a large anharmonicity relative to the natural linewidth. If |α| is
small, the atom can transition from the ground state |g〉 to the excited state |f〉 in two separate
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absorption events, via the intermediate state |e〉. Here we are only interested in the case where
this transition occurs via a simultaneous two-photon absorption, such that the intermediate
level is only virtually populated.

7.1.2 Atomic moment equations for the three-level atom

To account for energy decay from the atom into the environment, we follow the same method
by which we derived the master equation for the radiatively damped two-level atom, Eq. (5.23).
We therefore extend that case to the three-level atom and consider the master equation for the
radiatively damped three-level ladder-type atom [119, 120]:

dρ

dt
=

1

i~
[HA, ρ] +

Γ

2
(2Σ−ρΣ+ − Σ+Σ−ρ− ρΣ+Σ−) , (7.7)

where Γ is the population decay rate for the lower dipole, deg, and Σ− is, as before, the atomic
lowering operator, Eq. (7.6).

Drawing even more inspiration from the two-level atom – the optical Bloch equations, in
particular – we can derive a set of coupled operator moment equations for the three-level ladder-
type atom:

d

dt
〈Σ〉 = M〈Σ〉+B, (7.8)

with (σii = |i〉 〈i| , σij− = |j〉 〈i| , σij+ = |i〉 〈j|)

〈Σ〉 =



〈σgg〉
〈σeg

− 〉
〈σeg

+ 〉
〈σee〉
〈σfe

− 〉
〈σfe

+ 〉
〈σfg

− 〉
〈σfg

+ 〉


, B =


0
0
0

Γξ2

iξΩ
2

−iξΩ
2

0
0

, (7.9)

and

M (Σ) =

0 −iΩ
2

iΩ
2

Γ 0 0 0 0

−iΩ
2

−
[
Γ
2
−i

(
α
2
+δ

)]
0 iΩ

2
Γξ 0 −iξΩ

2
0

iΩ
2

0 −
[
Γ
2
+i

(
α
2
+δ

)]
−iΩ

2
0 Γξ 0 iξΩ

2

−Γξ2 iΩ
2

−iΩ
2

−Γ
(
1+ξ2

)
−iξΩ

2
iξΩ

2
0 0

−iξΩ
2

0 0 −iξΩ −
[
Γ
2

(
1+ξ2

)
+i

(
α
2
−δ

)]
0 iΩ

2
0

iξΩ
2

0 0 iξΩ 0 −
[
Γ
2

(
1+ξ2

)
−i

(
α
2
−δ

)]
0 −iΩ

2

0 −iξΩ
2

0 0 iΩ
2

0 −
[
Γ
2
ξ2−2iδ

]
0

0 0 iξΩ
2

0 0 −iΩ
2

0 −
[
Γ
2
ξ2+2iδ

]


. (7.10)

Besides the obvious difference in the size of the evolution matrices – 3×3 for the two-level atom
and 8× 8 for the three-level atom – the structure of the atomic operator moment equations are
the same. This matrix structure, then, allows for an easy implementation of the multi-mode
array filter, just as it did with the two-level atom.
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7.2 Atomic Fluorescence and Photon Correlations

Before investigating the frequency-filtered photon correlations from the fluorescence of the
three-level atom, we will first discuss the unfiltered case. We start by introducing the dressed
states of the three-level atom at two-photon resonance which, like the two-level atom, allows us
to derive analytic expressions for the second-order correlation functions of each of the expected
dressed state transitions. We then discuss the structure of the incoherent power spectrum,
highlighting the rich dynamics that occur. Finally, we investigate the bunched nature of the
atomic photon correlations.

While there is some interesting physics when considering off-resonance driving, δ 6= 0, and
for different dipole moment ratios, for this discussion we will stick to the case of two-photon
resonance, with ξ = 1. For a discussion on the effects of the drive detuning and the dipole
moment ratio, please refer to Ngaha [118].

7.2.1 The dressed states of the three-level atom

Diagonalising the Hamiltonian, Eq. (7.3), we find that the dressed state eigenfrequencies are
solutions to the characteristic polynomial,

ω3
i +

(α
2
+ 3δ

)
ω2
i +

[
(α+ 2δ) δ −

(
Ω

2

)2 (
1 + ξ2

)]
ωi − 2δ

(
Ω

2

)2

= 0. (7.11)

Cubic polynomials generally have complicated roots, therefore we simplify this equation by
considering the special case of two-photon resonance. Setting δ = 0, the three eigenfrequencies
are:

ωm = 0, (7.12a)

ωu = −α
4
+

√(α
4

)2
+

(
Ω

2

)2

(1 + ξ2), (7.12b)

ωl = −
α

4
−

√(α
4

)2
+

(
Ω

2

)2

(1 + ξ2), (7.12c)

with corresponding eigenstates,

|m〉 = 1√
1 + ξ2

(
ξ |g〉 − |f〉

)
, (7.13a)

|u〉 = 1√
4ω2

u +Ω2 (1 + ξ2)

(
Ω |g〉+ 2ωu |e〉+ ξΩ |f〉

)
, (7.13b)

|l〉 = 1√
4ω2

l +Ω2 (1 + ξ2)

(
Ω |g〉+ 2ωl |e〉+ ξΩ |f〉

)
, (7.13c)

such that
HA |m〉 = ~ωm |m〉 , HA |u〉 = ~ωu |u〉 , HA |l〉 = ~ωl |l〉 . (7.14)
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Figure 7.2: Energy level diagram of the dressed states of the three-level ladder-type atom at
two-photon resonance (δ = 0), with all possible transition paths shown.

These dressed states, as depicted in Fig. 7.2 with uncoupled atom-field states, open up several
more decay channels than the two-level atom. We expect, in fact, seven different possible
frequencies to appear in the fluorescence spectrum:

ω̃0 = ωd, (7.15a)

ω̃±1 = ωd ± (ωm − ωl) , (7.15b)

ω̃±2 = ωd ± (ωu − ωm) , (7.15c)

ω̃±3 = ωd ± (ωu − ωl) . (7.15d)

While the dressed states of the three-level atom are more complex, we are still able to derive
expressions for first- and second-order correlation functions in the secular approximation for
the various different dressed state transitions. Assuming a large separation between the dressed
state frequencies, in the limit Ω � Γ, we derive moment equations for a set of dressed state
operators (ωij = ωi − ωj):

d

dt
〈σum− 〉 = −

(
Γum

2
+ iωum

)
〈σum− 〉,

d

dt
〈σum+ 〉 = −

(
Γum

2
− iωum

)
〈σum+ 〉, (7.16a)

d

dt
〈σml

− 〉 = −
(
Γml

2
+ iωml

)
〈σml

− 〉,
d

dt
〈σml

+ 〉 = −
(
Γml

2
− iωml

)
〈σml

+ 〉, (7.16b)

d

dt
〈σul− 〉 = −

(
Γul

2
+ iωul

)
〈σul− 〉,

d

dt
〈σul+ 〉 = −

(
Γul

2
− iωul

)
〈σul+ 〉, (7.16c)

and
d

dt

(
〈σmm〉
〈σuu〉

)
= M

(
〈σmm〉
〈σuu〉

)
+B, (7.17)
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where

σum− = |m〉 〈u| , σum+ = |u〉 〈m| , (7.18a)

σml
− = |l〉 〈m| , σml

+ = |m〉 〈l| , (7.18b)

σul− = |l〉 〈u| , σul+ = |u〉 〈l| , (7.18c)

σmm = |m〉 〈m| , σuu = |u〉 〈u| , (7.18d)

are the dressed state operators. For more details of the derivation, definitions of the decay
rates, Γij , and the evolution matrix and nonhomogeneous vector, M and B, please refer to
Appendix D.

Analytic expressions can easily be derived for the raising and lowering operators in Eq. (7.16),
due to their uncoupled nature. The first-order correlation functions then resemble Eqs. (5.63),
in that they are simple exponential functions. The resulting power spectra in the dressed state
approximation, for all but the central frequency term, can derived be as Lorentzians.

Unfortunately, the dressed states and their corresponding frequencies for the three-level
atom, Eqs. (7.13) and (7.12), are not simple expressions, even when considering two-photon
resonance. We therefore generalise the second-order correlation function, by considering two
dressed state transitions, labelled “1” and “2”, with initial and final states labelled “i” and “f”,

|1〉i −→ |1〉f , |2〉i −→ |2〉f , (7.19)

and corresponding dressed state operators, from Eqs. (7.18),

σ1 = |1〉f i〈1|, σ2 = |2〉f i〈2|. (7.20)

Using the quantum regression equations, Eq. (3.47b) in particular, the second-order two-time
correlation function for the two dressed state transitions is then defined as

g
(2)
auto(τ) =

〈σ†1(0)σ
†
1σ1(τ)σ1(0)〉ss
〈σ†1σ1〉2ss

, (7.21)

or, for a general two-transition case,

g(2)cross(τ) =
〈σ†1(0)σ

†
2σ2(τ)σ1(0)〉ss

〈σ†1σ1〉ss〈σ
†
2σ2〉ss

. (7.22)

As an example, we consider one of the dressed state transition frequencies, Eqs. (7.15), ω̃+1 =

ωd + (ωm − ωl). This frequency is the result of the dressed state transition |m〉 → |l〉, with
dressed state operator σml

− . The normalised auto-correlation function for this dressed state
transition is then given by

g
(2)
ω̃+1

(τ) =
〈σml

+ (0)σml
+ σml

− (τ)σml
− (0)〉ss

〈σml
+ σml

− 〉2ss
. (7.23)
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Figure 7.3: Incoherent power spectrum of the driven three-level atom for weak, Ω/Γ = 0.01
(left), and strong driving, Ω/Γ = 40.0 (right) strengths. The other parameters are α/Γ =
−120.0, δ/Γ = 0.0, and ξ = 1.0.

For the other transition frequencies we have:

g
(2)
ω̃0

=
〈σulz (0)σulz σ

ul
z (τ)σulz (0)〉ss

〈σulz σulz 〉2ss
, (7.24a)

g
(2)
ω̃+2

=
〈σum− (0)σum− σum+ (τ)σum+ (0)〉ss

〈σum− σum+ 〉2ss
, (7.24b)

g
(2)
ω̃+3

=
〈σul− (0)σul−σ

ul
+ (τ)σul+ (0)〉ss

〈σul−σul+ 〉2ss
(7.24c)

where σulz = |u〉 〈u| − |l〉 〈l|. These correlation functions can be computed numerically and, as
in Chapter 6, will be what we compare against the frequency-filtered correlation functions.

7.2.2 Atomic fluorescence spectrum

We define the normalised first-order correlation function for the three-level ladder-type atom
as

g(1)ss (τ) =
〈Σ+(0)Σ−(τ)〉ss
〈Σ+Σ−〉ss

, (7.25)

such that the coherent and incoherent components of the power spectrum are:

Scoh(ω) =
1

2π

1

〈Σ+Σ−〉ss

∫ ∞

−∞
eiωτ 〈Σ+〉ss〈Σ−〉ssdτ, (7.26a)

Sinc(ω) =
1

2π

1

〈Σ+Σ−〉ss

∫ ∞

−∞
eiωτ 〈∆Σ+(0)∆Σ−(τ)〉dτ. (7.26b)

For weak driving amplitudes, Ω < Γ, the dressed states of the atom are mostly degenerate.
The only de-excitation path available to the atom, then, is via a cascaded decay; the first decay
emission from |f〉 to |e〉 by emitting a photon of frequency ωfe, followed by a decay from |e〉 to
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|g〉 with a photon of frequency ωeg. We see this in the power spectrum as two separate peaks
at ωd ± α/2 in Fig. 7.3. As the drive detuning increases, the frequency separation between the
two peaks will decrease. As the drive detuning approaches single-photon resonance, that is, the
frequency of the drive field is resonant with the lower dipole transition, ωd = ωeg, the incoherent
power spectrum will resemble that of the resonantly driven two-level atom.

As the driving strength increases, we see two structures appearing; these are shown for three
different values of the dipole moment ratio, ξ, in Fig. 7.4. The two sidebands each shift away
from the single-photon frequencies due to a Stark shifting of the energy levels [121, 122]. The
single-photon peaks also split into doublets, and are separated by the dressed state frequency
|ωl|. Meanwhile, a central triplet also emerges around the two-photon resonance frequency.
This triplet is similar to the Mollow triplet, and can in fact be found in two-level atoms driven
at two-photon resonance [123]. Each peak of the incoherent power spectrum is labelled with
the appropriate frequency, Eqs. (7.15), in Fig. 7.3.

Figures 7.5a - 7.5c show the effect that different dipole moment ratios have on the structure
of the incoherent power spectrum. When ξ = 1 there is an equal driving amplitude for both
dipoles, as well as an equal decay rate. This is reflected in the completely symmetric incoherent
power spectrum, Fig. 7.7b, where each pair of spectral peaks, ω̃±i, have the same height. When
ξ 6= 1, the power spectrum becomes asymmetric, with certain peaks being suppressed. In
Fig. 7.5a, ξ = 0.5, we see the left sideband of the central triplet is much smaller than the right
sideband, with frequencies corresponding to the upper dipole transition. With a lower moment
ratio, the driving amplitude and the decay rate of the upper dipole is weaker than the lower
dipole transition. We can then expect to see fewer transitions originating from the upper dipole
transition, and thus lower intensities for the respective peaks in the incoherent power spectrum.

7.2.3 Atomic photon correlations

Following on from the first-order correlation function, we introduce the normalised second-
order correlation function for the three-level atom:

g(2)ss (τ) =
〈Σ+(0)Σ+Σ−(τ)Σ−(0)〉ss

〈Σ+Σ−〉2ss
. (7.27)

As we saw in Chapter 5, photons emitted from a two-level atom are always perfectly anti-
bunched, due to the finite time between a photon being emitted and the atom being re-excited.
For the three-level atom, the atomic lowering operator, Σ−, is a combination of the lowering
operators for the two dipoles that make up the three-level atom, therefore an emission detected
by a photon detector, with the operator Σ−, can be from either the |f〉 → |e〉 transition, or the
|e〉 → |g〉 transition.

In the low driving regime, the cascaded decay that gives rise to the two distinct peaks in the
power spectrum, in Fig. 7.3, results in strongly bunched photons. When a photon is emitted
from the upper dipole, another photon must follow it for the atom to completely de-excite to the
ground state. Thus, detecting a first photon at time τ = 0, there is a much higher probability of
detecting another photon immediately after. Decreasing the driving amplitude, as in Fig. 7.6,
we see that the initial correlation value increases. For weaker and weaker driving amplitudes,
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Figure 7.4: Normalised incoherent power spectrum of the three-level atom at two-photon
resonance, δ = 0, as a function of the driving amplitude, Ω, for ξ = 0.5 (a), ξ = 1.0 (b), and
ξ = 1.5 (c). The anharmonicity is α/Γ = −120.
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(a) ξ = 0.5
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Figure 7.5: Normalised incoherent power spectrum of the three-level atom at two-photon
resonance, δ/Γ = 0, for ξ = 0.5 (a), ξ = 1.0 (b), and ξ = 1.5 (c). The other parameters are
Ω/Γ = 40 and α/Γ = −120.



7.2 Atomic Fluorescence and Photon Correlations 107

0 2 4 6 8 10

Γτ

0

2000

4000

6000

8000

10000

12000

14000
g

(2
)

s
s

(τ
)

Ω/Γ = 0.1

Ω/Γ = 0.3

Ω/Γ = 0.6

Ω/Γ = 1.0

Figure 7.6: Unfiltered photon correlations, g(2)ss (τ), of the three-level atom at low driving
amplitudes: Ω/Γ = 0.1 (blue), 0.3 (orange), 0.6 (green), and 1.0 (red). The other parameters
are α/Γ = −120.0, δ/Γ = 0.0, and ξ = 1.0.

two-photon absorption events become more and more infrequent, and thus the time between
emissions grows. As a photon of frequency ωeg will always follow a photon of frequency ωfe,
the “bunching” of the photon pairs becomes more distinct, hence a large initial value. There
are also weak, yet visible, oscillations appearing in the correlation function with frequency |α|/2
(Ref. [118], Section 6.2.1), due to the two different frequencies of photons detected.

Moving into the strong driving regime, specifically Ω/Γ = 40, we see a considerable change in
the nature of the photon correlations. Figure 7.7 shows the correlation functions for three values
of the dipole moment ratio: ξ = 0.5, 1.0, and 1.5. Even in the strong driving regime, we still see
the small oscillations, however they are of frequency |ωd + ωu|. There is also a much stronger
component oscillating at the dressed state frequency |ωd + ωl|; this is the frequency separation
between the sideband doublets and the sidebands of the central triplet. Another important
distinction is that the time it takes for the correlations to decay to unity is dependent on ξ; for
smaller values of ξ, the correlation functions take much longer to reach their steady state. This
is to be expected as the rate at which the |f〉 state decays to |e〉 is ξ2Γ, therefore a lower dipole
moment ratio will result in a longer expected time between photons emitted from the upper
dipole than the lower dipole.

The dipole moment ratio also appears to affect the initial correlation value. With a small
dipole ratio, ξ = 0.5 in Fig. 7.7a, most of the steady-state atomic population will be in either
the ground state |g〉 or the excited state |f〉. Hence, when a photon is detected at τ = 0,
the population will shift to the intermediate state, |e〉, which has a high probability of decay,
resulting in bunched photons, g(2)(0) > 0. We then see, as ξ increases in Figs. 7.7b and 7.7c,
that the initial value decreases. In contrast to the lower dipole moment ratio, if ξ > 1, the
atomic population will mostly be in the ground or intermediate states. Therefore, following a
photon detection, the atom will likely be in the ground state, and thus there is a low probability
for another detection to occur immediately, resulting in a lower initial correlation value.
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Figure 7.7: Second-order correlation functions of the three-level atom in the strong driving
regime, Ω/Γ = 40, for three dipole moment ratios: ξ = 0.5 (a), 1.0 (b), and 1.5(c). The other
parameters are α/Γ = −120 and δ/Γ = 0.0
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7.3 Multi-Mode Array Filtered Three-Level Atom Fluorescence

We have thus far summarised some of the key results that make the three-level ladder-type
atom an interesting system. Following on from Chapter 6, we now investigate the atom through
the lens of the multi-mode array filter. In doing so, we will demonstrate once again that the
multi-mode array filter offers better performance than the single-mode Lorentzian filter, with
regards to isolation of individual peaks in the fluorescence, while also verifying the dressed state
picture for the three-level atom.

We therefore cascade the fluorescence emitted by the three-level atom into the multi-mode
array filter, as described by the Hamiltonian is

H = −~
(α
2
+ δ
)
|e〉 〈e| − 2~δ |f〉 〈f |+ ~

Ω

2
(Σ− +Σ+)

+ ~
N∑

j=−N

∆ωja
†
jaj +

i~
2

N∑
j=−N

(
E∗j ajΣ+ − Eja†jΣ−

)
, (7.28)

where
∆ωj = (ω0 + jδω)− ωd, (7.29)

is the frequency detuning of the jth mode from the atomic driving frequency, with mode fre-
quency spacing δω, and

Ej =
√

Γκ

2N + 1
eimjπ/N , (7.30)

is the mode-dependent coupling, as in Eq. (4.18). The master equation describing this system
is then

dρ

dt
=

1

i~
[H, ρ] +

κ

2

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)
+

1

2

(
2CjρC

†
j − C

†
jCjρ− ρC†

jCj

)
, (7.31)

with cascaded decay operator:

Cj =

√
Γ

2N + 1
eimjπ/NΣ− +

√
κaj . (7.32)

We follow on from the two-level atom and derive a set of coupled moment equations for
the coupled atom-filter mode operators. The structure of the coupling is the same as with the
two-level atom, as shown in Fig. 6.2. Using these coupled moment equations, we numerically
calculate the first- and second-order correlation functions for all results presented in this section.
While not displayed here, all of the moment equations for the single-filter system, as well as
the equations for solving the first- and second-order correlation functions, can be found in
Appendix E.

Unless otherwise stated, the results presented in this section are calculated in the strong driv-
ing regime at two-photon resonance, with fixed parameters Ω/Γ = 40.0, α/Γ = −120.0, δ/Γ =

0.0, and ξ = 1.0.
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Figure 7.8: Frequency-filtered incoherent power spectrum of the central peak of the three-
level atom, ∆ω0 = 0, for the multi-mode array filter (blue, solid), with Nδω/Γ = 6.0, and the
single-mode filter (orange, dashed), with κ/Γ = 6.0. The filtered spectra are compared against
the full atomic spectrum (grey, dotted). The multi-mode array filter parameters are N = 80
and κ = 2.5δω.

7.3.1 Frequency-filtered incoherent power spectrum

As in the previous chapter, the normalised first-order correlation function for the multi-mode
array filtered three-level atom is

g
(1)
filtered(τ) =

〈A†(τ)A(0)〉ss
〈A†A〉ss

, (7.33)

and, using the definition of the quantum fluctuation operators, Eq. (5.39), the incoherent power
spectrum of the filtered fluorescence is given by

Sinc(ω) =
1

2π

1

〈A†A〉ss

∫ ∞

−∞
eiωτ 〈∆A†(τ)∆A(0)〉ssdτ. (7.34)

Figures 7.3 - 7.5 have shown us that the unfiltered incoherent power spectrum of the three-
level atom is much more complicated, and indeed more interesting, than the simple two-level
atom. In the strong driving regime, the sideband doublets and the central triplet are well
separated, yet the separation between each peak of the triplet and doublets is the dressed state
frequency ωl, Eq. (7.12c).

Figures 7.8 and 7.9 show comparisons of the frequency-filtered incoherent power spectra
of the single- and multi-mode array filters when resonant with each of the seven peaks. The
filter halfwidths for both the single- and multi-mode filters are chosen such that the fullwidth
encompasses the entire peak of interest, and thus is set to κ/Γ = 6 for the single-mode filter, and
Nδω/Γ = 6 for the multi-mode filter, with N = 80 and δω/Γ = 0.075. For the chosen atomic
parameters (Ω/Γ = 40, α/Γ = −120, δ/Γ = 0, ξ = 1), the frequency separation of the split peaks
is, from Eq. (7.12c), ωl/Γ ≈ 11. This relatively close spacing results in some inevitable overlap
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(a) ω̃±1 Peaks (∆ω0/Γ = ±11.23)
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(c) ω̃±3 Peaks (∆ω0/Γ = ±82.46)
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Figure 7.9: Frequency-filtered incoherent power spectrum of the side peaks of the three-level
atom, ∆ω0 = ω̃±1 (a), ω̃±2 (b), and ω̃±3 (c), for the multi-mode array filter (blue, solid), with
Nδω/Γ = 6.0, and the single-mode filter (orange, dashed), with κ/Γ = 6.0. The filtered spectra
are compared against the full atomic spectrum (grey, dotted). The multi-mode array filter
parameters are N = 80 and κ = 2.5δω.
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(a) Central Triplet (∆ω0/Γ = 0.0)
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(b) Right Doublet (∆ω0/Γ = 77.0)
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Figure 7.10: Frequency-filtered incoherent power spectrum of the central triplet, ∆ω0/Γ = 0.0
(a), and right triplet, ∆ω0/Γ = 77.0 (b), of the three-level atom for the multi-mode array filter
(blue, solid), with Nδω/Γ = 30.0, and the single-mode filter (orange, dashed), with κ/Γ = 30.0.
The filtered spectra are compared against the full atomic spectrum (grey, dotted). The multi-
mode array filter parameters are N = 80 and κ = 2.5δω.
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between the peaks, making it difficult to isolate a target frequency entirely. We do see, however,
the sharp cut-off in the frequency response of the multi-mode array filter playing an effective
role in suppressing non target frequencies, just as we saw in Section 6.2.

The sharp frequency cut-off of the multi-mode array filter also allows us to correlate photons
originating from the side doublets or the central triplet. To filter these frequency structures,
we require a much larger filter halfwidth such that the entire doublet or triplet is enveloped by
the frequency response. For a single-mode Lorentzian filter, larger filter halfwidths have even
longer tails, easily allowing photons of other frequencies to enter. Figures 7.10a and 7.10b show
the filtered incoherent spectra – on a logarithmic scale – when tuned to the central triplet and
right doublet, respectively. For the respective spectral structure of interest, we see that both
the single- and multi-mode filters accurately recreate the atomic spectrum. While the multi-
mode array filter (blue) does not perfectly reject the other frequency peaks, the non target
frequencies are approximately three orders of magnitude weaker than for the single-mode filter
(orange, dashed). We also clearly see the sudden decrease in intensity of the multi-mode array
filter around the filter halfwidth, Nδω/Γ = 30.

7.3.2 Auto-correlations

We now look towards the frequency-filtered second-order correlation functions of the filtered
three-level atom, where, as in Eq. (6.10), the second-order correlation function for the multi-
mode array filter is

g
(2)
filtered(τ) =

〈A†(0)A†A(τ)A(0)〉ss
〈A†A〉2ss

. (7.35)

Given that the multi-mode array filter has a much sharper frequency response, we can allow
for much wider halfwidths than the single-mode filter. We wish to present results comparing
the optimal case for the single-mode filter against the optimal case for the multi-mode filter.
Therefore, for the results presented in this section, we choose values of the filter halfwidth –
κ/Γ for the single-mode and Nδω/Γ for the multi-mode array – such that resulting frequency-
filtered auto-correlation closely matches the ideal dressed state correlation. The optimal filter
halfwidths were chosen by investigating the mean difference between the filtered correlation
functions and the dressed state correlation functions, Eq. (6.24), as we did for the two-level atom
in Section 6.3.1, and choosing the halfwidth corresponding to the smallest mean difference.

Considering first the weak driving regime, with Ω/Γ = 5, the atomic spectrum consists of
two peaks, Fig. 7.3, corresponding to consecutive emissions from the upper and lower dipoles.
We therefore expect each individual emission to be antibunched, for the same reason that the
two-level atom is. With the large frequency separation of |α| between the two emission peaks,
we set a large filter halfwidth for the multi-mode array filter. Figure 7.11 shows that these
transitions are indeed antibunched, with an initial correlation value of 3.57 × 10−4 for the
multi-mode array filter (blue), and 3.32× 10−2 for the single-mode filter (orange, dashed).

Increasing the driving strength to Ω/Γ = 40, we are now able to investigate the correlation
functions of the dressed state transitions. From the dressed state picture, Fig. 7.2, we see the
only cascaded decay of the same transition is for the central frequency, ω̃0, and thus we expect
to see antibunched correlation functions for all side-peaks of the dressed state transitions. This
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Figure 7.11: Frequency-filtered auto-correlation of the right peak, ∆ω0/Γ = 60, of the three-
level atom in the weak driving regime, Ω/Γ = 5. The multi-mode array filter (blue, solid) has
an effective halfwidth of Nδω/Γ = 20.0, and the single-mode filter (orange, dashed) has an
halfwidth of κ/Γ = 1.0. The other filter parameters are N = 80, δω/Γ = 0.25, κ/Γ = 0.625, and
m = 1.

is reflected in the dressed state and the frequency-filtered correlation functions in Fig. 7.12,
for each of the non-central peaks. Once again, the multi-mode array filter shows its improved
frequency isolation over the single-mode filter where, in Figs. 7.12a - 7.12c, the faster oscillations
have almost been entirely rejected by the multi-mode array filter.

In the two-level atom, interference between the two decay paths, |u〉 → |u〉 and |d〉 → |d〉,
caused photons from the central peak of the Mollow triplet to be second-order coherent. For the
three-level atom, however, the photons of the central peak appear to be bunched, as shown in
Fig. 7.13a. From Fig. 7.2, any |u〉 → |u〉 or |d〉 → |d〉 transitions can be immediately followed by
another. There are, however, two other possible decay paths available if starting in the upper
dressed state |u〉: |u〉 → |u〉 → |m〉 and |u〉 → |u〉 → |d〉. These two pathways, as well as the
interference between the |u〉 → |u〉 and |d〉 → |d〉 transitions, are most likely why the bunching
for the filtered central peak is not very strong.

Looking now at the central triplet and the sideband doublets as a whole, we are able to
calculate photon correlations from these structures more accurately using the multi-mode array
filter, just as we filtered the spectrum in Fig. 7.10. In Figs. 7.13b and 7.13c, we compare the
single- and multi-mode filtered correlation functions. We see, once again, that the multi-mode
array filter is able to isolate the target frequencies more accurately; the faster oscillations visible
in the single-mode filtered correlation functions (the orange curves) have been rejected by the
multi-mode array filter. The slower oscillations seen in both is caused by the beating between
the frequencies of the two or three peaks of the doublet or triplet, which is exactly the dressed
state frequency ωl/2π.

We should note, however, that there are some key differences between the single-mode
and multi-mode filtered results. In Fig. 7.12a, neither the single-mode or multi-mode filtered
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(c) ω̃+3 Peak (∆ω0/Γ = 82.46)
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Figure 7.12: Frequency-filtered auto-correlation functions of the multi-mode (blue) and single-
mode(orange) filtered first (a), second (b), and third (c) peak of the atomic spectrum, as labelled
in Fig. 7.3. The frequency-filtered correlation functions are compared against the dressed-state
correlation functions (grey, dotted). The other parameters are Ω/Γ = 40.0, N = 80, δω/Γ =
0.075, κ/Γ = 0.1875, and, for the single-mode filter, κ/Γ = 6.0.
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(a) Central Peak (∆ω0/Γ = 0.0)
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(b) Central Triplet (∆ω0/Γ = 0.0)
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(c) Right Doublet (∆ω0/Γ = 77.0)
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Figure 7.13: Frequency-filtered auto-correlation functions of the multi-mode (blue) and single-
mode (orange) filtered central peak (a), central triplet (b), and right doublet (c) of the atomic
spectrum. We compare the central filtered correlation function in (a) against the dressed state
correlation function (grey, dotted). The other parameters are N = 80 and m = 1.
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correlation functions match the dressed-state result particularly well. For the given atomic
parameters, the target transitions, at frequency ±ωl ≈ ±11.23, are much weaker than the
dominant central peak. Thus, it is difficult to completely filter out the central frequency.
Figures 7.12b and 7.12c, on the other hand, show a better initial correlation value for the
single-mode filter over the multi-mode array filter; for both peaks the single-mode filtered initial
correlation value is slightly closer to zero. This is, however, due to the wider frequency response
of the single-mode filter, such that both the ω̃±2 and ω̃±3 peaks are covered by the Lorentzian
frequency response. As we saw in Fig. 7.13c, when detecting photons from either frequency, the
resulting correlation function is nearly perfectly antibunched.

7.3.3 Cross-correlations of the transition peaks

To investigate the frequency-filtered cross-correlation functions, we once again split the
atomic fluorescence evenly into two identical filters, as in Section 6.4, such that Hamiltonian is

H = −~
(α
2
+ δ
)
|e〉 〈e| − 2~δ |f〉 〈f |+ ~

Ω

2
(Σ− +Σ+)

+ ~
N∑

j=−N

∆ω
(a)
j a†jaj +

i~
2

N∑
j=−N

(
E(a)j

∗
ajΣ+ − E(a)j a†jΣ−

)

+ ~
N∑

j=−N

∆ω
(b)
j b†jbj +

i~
2

N∑
j=−N

(
E(b)j

∗
bjΣ+ − E(b)j b†jΣ−

)
, (7.36)

where, as stated in Section 6.4,

∆ω
(a)
j =

(
ω
(a)
0 + jδω(a)

)
− ωd, ∆ω

(b)
j =

(
ω
(b)
0 + jδω(b)

)
− ωd, (7.37)

are the frequency detunings, and

E(a)j =

√
Γκa

2 (2N + 1)
eimjπ/N , E(b)j =

√
Γκb

2 (2N + 1)
eimjπ/N . (7.38)

are the mode-dependent couplings, for filters A and B, respectively. The master equation for
the two-filter three-level atom cascaded system is then

dρ

dt
=

1

i~
[H, ρ] +

κa
2

N∑
j=−N

(
2ajρa

†
j − a

†
jajρ− ρa

†
jaj

)
+

1

2

(
2C

(a)
j ρC

(a)
j

†
− C(a)

j

†
C

(a)
j ρ− ρC(a)

j

†
C

(a)
j

)
+
κb
2

N∑
j=−N

(
2bjρb

†
j − b

†
jbjρ− ρb

†
jbj

)
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1

2

(
2C
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†
C
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j ρ− ρC(b)

j

†
C
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)
, (7.39)
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Figure 7.14: Frequency-filtered cross-correlation of the ωfe and ωeg peaks in the low driving
limit, Ω/Γ = 5. The horizontal dashed line indicates the stead-state g(2)(τ → ∞) = 1. We
treat both filters as identical, with δωa = δωb = δω and κa = κb = κ. The other parameters
are Nδω/Γ = 20, κ = 2.5δω,∆ω

(a)
0 /Γ = 60.0,∆ω

(b)
0 /Γ = −60.0 and, for the single-mode filters,

κa/Γ = κb/Γ = 1.

with cascaded decay operators:

C
(a)
j =

√
Γ/2

2N + 1
eimjπ/NΣ− +

√
κaaj , C

(b)
j =

√
Γ/2

2N + 1
eimjπ/NΣ− +

√
κbbj . (7.40)

Following the same moment equation method as before, we are able to easily solve for two-
time cross-correlation functions. However, due to the increased complexity of the system, we no
longer expect the second-order cross-correlation function to be symmetric in time. We therefore
redefine the cross-correlation function, Eq. (6.36), as

g(2)(α, 0;β, τ) =
G(2)(α, 0;β, τ)

〈A†A〉ss〈B†B〉ss
, (7.41)

with

G(2)(α, 0;β, τ) =

〈A†(0)B†B(τ)A(0)〉ss 0 ≤ τ

〈B†(0)A†A(−τ)B(0)〉ss τ ≤ 0
, (7.42)

where, as before, α and β indicate the central resonance frequencies of filters A and B. The
complete set of moment equations needed to calculate the cross-correlation function for the
two-filter system can be found in Appendix F.

For the results presented in this section, we choose filter halfwidths of the single- and multi-
mode array filters such that, for a given target frequency, the auto-correlation is optimised, i.e.,
the filter halfwidth values from the previous section. This will give the largest filter halfwidth
possible for isolating the target peak, with minimal contamination from other frequencies.

Starting with the weakly driven atom, we set the two filters, in Fig. 7.14, to be resonant with
either ωfe or ωeg, the two bare atom transition frequencies. In Fig. 7.14 we first detect a photon
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of frequency ωeg and then detect a photon of frequency ωfe, and for τ < 0, we have the reverse.
From the structure of the atom, Fig. 7.1, and the nature of the cascaded decay, we expect
the atom to emit an ωeg photon following an ωfe photon and, in the filtered cross-correlation
functions, this is exactly what we see. When the first filter is centred on ωeg, we see strong
anti-bunching in the short-time behaviour. Unfortunately, due to the higher dimensionality
of the three-level atom, it is too difficult to derive expressions for the short-time behaviour of
the filtered correlations, as could be done for the two-level atom [27]. We can, however, see
that there are interferences between the two different time-orderings such that, for τ < 0, the
correlation functions are initially strongly bunched. Similarly, for τ > 0, the strong bunching is
initially diminished. While we do not have analytic expressions to compare with, these results
match those seen experimentally by Gasparinetti et al. [65].

We have already seen that, in the strong driving regime, we expect to see seven different
frequencies appearing in the power spectrum; this gives 49 possible arrangements of cross-
correlations, including auto-correlations. We first look at cross-correlations between opposite
peaks of the power spectrum, with ∆ω

(a)
0 = −∆ω(b)

0 . From the dressed state picture, Fig. 7.2,
we expect photons from opposite peaks to be correlated such that the total energy is conserved.
In Fig. 7.15 we cross-correlate photons from three transitions: |m〉 → |l〉 → |m〉 (Fig. 7.15a),
|m〉 → |u〉 → |m〉 (Fig. 7.15b), and |u〉 → |l〉 → |u〉 (Fig. 7.15c). From the calculated dressed
correlation functions – calculated using Eq. 7.22 – we indeed see that photons of opposite
frequencies should be correlated. Just like the cross-correlated side-and-central peaks of the
Mollow triplet, however, that bunching is reduced by approximately half due to the different
time-orderings.

We now choose the resonance frequencies of our two filters to be completely different, i.e.,
correlating photons from different transitions altogether. In Fig. 7.16, each transition has been
picked such that, in the dressed state picture, cascaded decay is possible in one direction, but
impossible in the other direction. In Fig. 7.16a we target the ω̃+1 and ω̃−3 peaks. If detecting
an ω̃+1 photon first, the expected dressed state decay path is |m〉 → |l〉 → |u〉 which, from
Fig. 7.2, is an allowed transition. Decaying in the opposite direction, however, is impossible, as
both transitions have different initial and final states states: |l〉 → |u〉 and |m〉 → |l〉. Similarly,
for the other target frequencies in Fig. 7.16 we have: ω̃0 and ω̃−2 with respective transitions
|u〉 → |u〉 and |m〉 → |u〉 (Fig. 7.16b); and ω̃+2 and ω̃+3 with respective transitions |u〉 → |m〉
and |u〉 → |l〉 (Fig. 7.16c).

The cross-correlations presented in Figs. 7.15 and 7.16 all show similar “short-time be-
haviour” to the two-level atom, as discussed in Section 6.4.2. Due to the increased complexity
of the additional dipole transition of the three-level atom, there are no analytical expressions
for the short-time behaviour with which can compare our results. We can, however, make qual-
itative comparisons based on the expected behaviour, as described by Schrama et al. [26, 27].
For the cross-correlations of opposite peaks, Fig. 7.15, we see a dip in the centre, at τ = 0.
This behaviour is most likely the same behaviour we saw with the cross-correlated side-peaks
of the Mollow triplet, Fig. 6.19b, where the time-ordering of the two transitions cannot be de-
termined by the two filters, and thus the correlation is diminished. For the cross-correlations
in Figs. 7.16a and 7.16b, where there is strong correlation in one direction and anti-correlation
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Figure 7.15: Frequency-filtered cross-correlations for opposite fluorescence peaks: ω̃±1 (a, b),
ω̃±2 (c, d), and ω̃±3 (e, f), in both directions. The correlations are filtered with the multi-mode
array filter (N = 80) (blue, solid) and the single-mode filter (orange, dashed). The frequency-
filtered correlation functions are compared against the dressed-state correlation functions (grey,
dotted). We treat both filters as identical, with δωa = δωb = δω and κa = κb = κ. For the
multi-mode array filter, κ = 2.5δω and m = 1.
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Figure 7.16: Frequency-filtered cross-correlations for different combinations of fluorescence
peaks: ω̃+1 and ω̃−3 (a, b), ω̃0 and ω̃+3 (c, d), and ω̃+3 and ω̃−2 (e, f), in both directions.
The correlations are filtered with the multi-mode array filter (N = 80) (blue, solid) and the
single-mode filter (orange, dashed). The frequency-filtered correlation functions are compared
against the dressed-state correlation functions (grey, dotted). For the multi-mode array filter,
κa/δωa = κb/δωb = 2.5 and m = 1.
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Figure 7.17: Frequency-filtered cross-correlation of the two side-doublets, with ∆ω
(a)
0 /Γ = 77.0

and ∆ω
(b)
0 /Γ = −77.0, for the multi-mode array filter (blue, solid) and the single-mode filter

(orange, dashed). The other parameters are N = 80, κa = 2.5δωa, κb = 2.5δωb.

in the opposite, the initial filtered correlation appears to tend towards the midpoint
Interestingly, we see that some of these cross-correlations are not symmetrical. In fact,

depending on the ordering of the photon detections, large oscillations appear in the cross-
correlation; this is especially prominent for the single-mode filtered correlation functions for
τ > 0 in Figs. 7.15a and 7.16b, and for τ < 0 in Figs. 7.15b and 7.15c. We notice that this
generally occurs when the first conditional detection is of a photon of the lower transition of a
cascaded decay. For example, for τ < 0 in Fig. 7.15c, the first detected photon is of frequency
ω̃+3 and the second photon is of frequency ω̃−3. From the dressed state picture, Fig. 7.2, the
atom decays as |l〉 → |u〉 → |l〉; the first emission is a photon of frequency ω̃−3, followed by
a photon of frequency ω̃+3. When detecting a lower photon first, ω̃+3, there is no guarantee
that the atom will decay in the same pathway; this opens up the possibility of detecting a
neighbouring frequency. Recalling that the frequency separation between the peaks of the side
doublets, as well as the separation of the peaks in the central triplet, is the dressed state
frequency ωl, this could explain the large oscillations of frequency ωl/2π in the asymmetrical
cross-correlations.

In Fig. 7.17 we plot the cross-correlation function between the left and right side-doublets.
Instead of choosing a smaller bandwidth such that only a single frequency is picked out, the
multi-mode array filter encompasses both peaks. Seeing as both the multi-mode and single-mode
filtered correlations appear closely matched, it seems likely that the second filter is detecting
two possible transitions at the end of a cascaded decay. Fortunately, the improved frequency
isolation of the multi-mode array filter allows for more precise frequency filtering, hence why the
multi-mode filtered cross-correlation functions are in general much smoother than the single-
mode filtered correlations when picking out a single frequency.

While this is most likely the reason for the asymmetry, we do note another potential ex-
planation. Similar asymmetrical correlation functions, with large oscillations in one direction,
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have been reported in the context of the “breakdown of detailed balance” [124–126]. In par-
ticular, Fig. 5 of Ref. [126] demonstrates the same asymmetry in the cross-correlations, where
one arrangement of cross-correlations displays much larger oscillations. In this work, however,
Marquina-Cruz et al. study the fluorescence of a three-level V-type atom, and the correlations in
Fig. 5 are, in fact, amplitude-intensity correlation functions, g(1.5)(τ). It could prove interesting
to investigate these correlations in future work.

7.3.4 Cross-correlations outside of the transition peaks

We can also cross-correlate frequencies outside of the dressed state transition frequencies,
just as we did for the two-level atom in Section 6.4.3. Along the auto-correlation diagonal,
where ∆ω

(a)
0 = ∆ω

(b)
0 , we see regions of strong antibunching surrounding the six side-peaks. If

we consider cross-correlations of frequencies far off resonance from any side-peak, say ∆ω
(a)
0 /Γ ≈

−110.0 and ∆ω
(b)
0 /Γ ≈ −40.0, we see that the resulting correlation function is approximately

second-order coherent, with g(2)(0) ≈ 1. When the resonance of one of the filters is then shifted
to a side-peak, the destructive interference in the time-orderings causes a decrease in the initial
value. This is similar to the two-level atom when correlating photons from the central peak and
one of the side-peaks.

We also see strong bunching along the off-diagonal; indicative of the two-photon “leapfrog”
decay process discussed in Section 6.4.3. With the two-level atom, there were regions of strong
correlations where the average frequency of the two photons were equal to ωA and ωA±Ω. With
the seven different dressed state transition frequencies, we see regions of strong correlations
where the average frequency is equal to ωd ± ω̃i, where i = 0, 1, 2, 3.
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Figure 7.18: Scan of initial cross-correlation values for varying central frequencies of two
multi-mode array filters. For this figure, blue corresponds to antibunching with g(2)(0) < 1,
red corresponds to bunching with g(2)(0) > 1, and white corresponds to second-order coherence
with g(2)(0) = 1. The parameters are Nδωa/Γ = Nδωb/Γ = 4.0, and κa/δωa, κb/δωb = 2.5.
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8 Conclusion

We will begin with a summary of topics and ideas introduced in this thesis. In the first
part of this thesis, Part I Quantum Optics and Filtering, we focused on introducing some
of the key concepts used throughout the thesis. In Chapter 2 we summarised key principles
of quantum mechanics and, using these principles, quantised the electromagnetic field as a
collection of harmonic oscillators. In Chapter 3 we then introduced a method for calculating
quantities of lossy quantum systems. Using the Markov and Born approximations, we derived
the Lindblad master equation for a damped harmonic oscillator. Using the Lindblad master
equations, we then introduced the quantum regression equations, offering a simple method with
which to calculate first- and second-order correlation functions. Finally, we introduced quantum
cascaded systems theory, allowing us to model the output of one quantum system as the input
of another quantum system.

In Chapter 4 we discussed the Fabry-Pérot interferometer, one of the most common methods
of frequency filtering in a classical optical setting. By using the transfer matrix method, we
derived an analytical expression for the transmission spectrum. In general, the Fabry-Pérot
interferometer supports an infinite number of modes, and therefore frequencies. We therefore
showed that, under the right conditions, the single-mode approximation, and thus the quantum
model, of the Fabry-Pérot interferometer was valid. We then expanded the quantum model
by allowing for an array of single-mode cavities, resulting in the novel method of this thesis:
the multi-mode array filter. Under a delta-function impulse driving, we derived an analytic
expression for the temporal response of the multi-mode array filter, Eq. (4.23), and found it to
be a positive-sided sinc function. We then derived a semi-analytical expression for the frequency
response of the filter under continuous driving. By choosing the correct set of parameters, we
could tune the frequency response of the multi-mode array filter to approximate a rectangular
filter. We compared the frequency response of the multi-mode array filter against that of a
single-mode Lorentzian filter for a range of parameters, demonstrating that the multi-mode
array filter can achieve much wider bandwidths, with a sharper response cut-off, than a single-
mode filter.

In Part II Resonance Fluorescence, we then investigated two source systems that serve as test
cases for the multi-mode array filter. Starting with Chapter 5, we introduced the first of these
systems: the resonantly driven two-level atom. We began by deriving a mathematical model of
the radiatively damped two-level atom interacting with a driving field in terms of the pseudo-
spin Pauli operators. Using these operators we introduced the optical Bloch equations, providing
a simple set of three coupled moment equations that allowed us to easily calculate any quantity
of interest. We then derived expressions for the atomic dressed states, and showed that, when
strongly driven, transitions amongst the dressed states resulted in a three-peaked fluorescence
spectrum known as the Mollow triplet. We then introduced the second-order correlation function
as the quantum mechanical analogue of intensity correlation functions, as well as the definitions
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of bunched and antibunched light. Finally, we derived expressions for second-order correlations
functions for each frequency component of the Mollow triplet in the secular approximation.
These expressions would then be used to compare against the frequency-filtered correlation
functions in Chapter 6.

Having laid the foundations of the first source system, we moved onto the main goal of
the thesis: calculating frequency-filtered photon-correlations. By cascading the fluorescence into
the multi-mode array filter, we ensured that the presence of the filter had no effect on the
evolution of the atom. This allowed us to derive a closed system of coupled moment equations,
up to the fourth-order in filter operators, resulting in an effective method for calculating filtered
photon correlations. This proved extremely beneficial as the large dimensions of the atom-filter
composite system made solving the master equation computationally difficult; the two-level
atom, with excited and ground states |e〉 and |g〉, are coupled to 2N+1 individual cavity modes,
each with their own infinitely large Fock basis. Instead, we could obtain exact solutions for the
operator averages without needing to truncate the Hilbert spaces. The lack of back-action of
the filter on the evolution of the atom also provided a simple structure to the coupled moment
equations, where higher-order terms were only dependent on lower-order terms. Calculations,
both analytical and numerical, were therefore easier to perform.

Using the derived semi-analytical equation, Eqs. (6.21) and (6.22), we calculated frequency-
filtered first-order correlations, and the subsequent frequency-filtered power spectra for the
single- and multi-mode array filtered two-level atom. We compared the two filtering methods
for varying halfwidth and demonstrated that the multi-mode array filter could reject non-target
frequencies much more effectively than the standard single-mode filter. We then presented
numerical calculations of frequency-filtered auto-correlations, when resonant with the central
or right peak of the Mollow triplet. From the expressions derived in the secular approximation,
we expect the ideal filtered correlation functions to be completely smooth. We saw that the
multi-mode array filter produced much smoother correlation functions than the single-mode
filter, once again owing to its improved frequency isolation. We compared the mean difference
between the filtered and dressed-state correlation functions of the single- and multi-mode array
filters for varying halfwidth and phase and showed that the multi-mode array filter produced
more accurate filtered auto-correlations for larger filter bandwidths.

Due to the simplified computations of the moment equation method, we were able to easily
introduce a second frequency filter in order to calculate frequency-filtered cross-correlations.
We found, however, that the frequency-filtered cross-correlations did not accurately represent
the correlation functions derived in the secular approximation. As it turns out, interferences
between the time-orderings of the different transitions had a significant effect on the resulting
correlation functions. We therefore compared the numerical results to expressions derived by
Schrama et al. for the “short-time behaviour” [27]. The difference in the short-time behaviour
and the dressed state correlation functions gave rise to interesting areas of correlations, as we
saw in Section 6.4.3. By calculating the initial value of the cross-correlation function for varying
frequency detunings, we found regions of strong correlations corresponding to “leapfrog decay”
processes, i.e., simultaneous two-photon decay from the atom’s dressed states. The multi-mode
array filter showed more clearly defined regions of correlations due to its improved frequency
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isolation.
Finally, in Chapter 7, we increased the complexity of the source subsystem and investigated

the fluorescence of a three-level ladder-type atom driven at two-photon resonance. The addi-
tion of an extra dipole transition in the ladder structure resulted in a more intricate dressed
state level structure. For a weak drive field, the fluorescence spectrum displayed two peaks,
corresponding to transitions amongst the bare atomic states. When strongly driven, we saw
the fluorescence spectrum split into seven distinct peaks; the two single-photon transition peaks
split into doublets, and a central, Mollow-like triplet emerged. We derived expressions for the
dressed states at two-photon resonance, and used them to derive semi-analytic expressions for
dressed-state correlation functions in the secular approximation. Unfortunately, the increased
complexity of the three-level atom limited our ability to derive explicit expressions for these
correlation functions.

Operator moment equations were also derived for the three-level atom, which were governed
by an eight-by-eight matrix. While this is larger than for the two-level atom, the structure
of the atom-filter coupled moment equations was the same, thus we were again able to derive
a complete set of moment equations for the filter operators. We then presented numerical
calculations of frequency-filtered first- and second-order correlation functions for the filtered
three-level atom. The varying heights of the seven transition peaks in the fluorescence spectrum
made for a more trying example for the multi-mode array filter; particularly for the closely
spaced peaks of the central triplet. It was shown, however, that the multi-mode array filter
still made for a more accurate frequency filter. We then introduced a second frequency filter,
and presented numerical results for frequency-filtered cross-correlations. Unlike the two-level
atom driven at resonance, we do not expect cross-correlations of different transition frequencies
to be symmetric about zero time delay. We therefore introduced the two-time correlation
function for positive and negative time delay. When targeting opposite transition frequencies
(with respect to the frequency of the driving laser), we found strong cross-correlations in close
agreement with the long-time behaviour from the secular approximation. As the multi-mode
array filter allows for larger filter halfwidths without compromising frequency isolation, we once
again saw much smoother filtered correlation functions than the single-mode filtered results.
Cross-correlation functions for different transition frequencies were presented, with the resulting
long-time behaviour closely matching that of the secular approximation. While we do not have
expressions for the short-time behaviour of the filtered correlations of the three-level atom, the
results presented aligned with the underlying theory as discussed by Schrama et al. [27].

Following on from the two-level atom, the improved frequency response of the multi-mode
array filter allowed us to uncover a rich landscape of interesting correlations for varying fre-
quency detuning. Much like the two-level atom, there are various regions of strong correlations
corresponding to two-photon leapfrog decays. The multi-mode array filter also allowed us to
explain the large, asymmetrical oscillations present in some of the cross-correlation functions.

We have thus introduced, and investigated, an improved method for calculating frequency-
filtered photon correlations with the multi-mode array filter. With both the two- and three-level
atom, frequency-filtered power spectra and second-order correlation functions were compared
against a standard Lorentzian filter with markedly improved results. This is due to the ap-
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proximately rectangular frequency response of the multi-mode array filter, allowing for much
larger filter bandwidths, and thus temporal response, without sacrificing frequency isolation.
However, it is not necessarily a simple method to implement. A large number of modes N are
required for the frequency response to better approximate a sinc filter, resulting in a very large
Hilbert space. We were able to circumvent this issue by solving for the correlation functions
with the moment equations, a novel approach on its own. For the two systems presented in this
thesis, we were able to derive a closed set of moment equations that described the evolution of
the source system. Unfortunately, not all systems can be described by a closed set of moment
equations. Therefore a master equation approach is needed for such systems.

Finally, we have defined the construction of the multi-mode array filter with the goal of
modelling a physically realisable system. The multi-mode array filter could be then realised in
an experimental setting, offering an improved method for measuring frequency-filtered photon
correlations. The improved frequency isolations means that the multi-mode array filter could
potentially be more effective at isolating highly correlated photon pairs for use in interferometry,
as in the work by Peiris et al. [32]. The box-type frequency response would also allow for more
fluorescence to be captured by the filter, thus improving visibility of interference fringes.

Another system of interest that can produce interesting physics when frequency filtered is
the degenerate parametric amplifier. This driven non-linear system produces correlated photon
pairs, yet as a degenerate system the output spectrum is simply a single Lorentzian. By finely
filtering photons from within the spectral shape, we can produce non-degenerate photons from
a degenerate source. The sharper frequency response of the multi-mode array filter would allow
for a much finer selection of entangled photons, and thus be worthwhile system for further
exploration.
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A Moment Equations of the Two-Level Atom
and Single Filter Cascaded System

Here we present all of the operator moment equations needed to calculate first- and second-
order correlation functions for the multi-mode array filtered two-level atom. We first show the
moment equations, as derived from Eq. (6.6). These are then followed by the coupled equations
for both the filtered first- and second-order correlation functions.

The Fortan90 code used to numerically calculate these equations can be found at the fol-
lowing Github repository: github.com/jnga773/multi-mode-filter.

A.1 Moment Equations

We write these coupled moment equations in matrix form, where we use the notation

〈σ〉 =

〈σ−〉〈σ+〉
〈σz〉

 , 〈Xσ〉 =

〈Xσ−〉〈Xσ+〉
〈Xσz〉

 . (A.1)

A.1.1 Atomic Operator Moments

d

dt
〈σ〉 = M〈σ〉+

 0

0

−γ

 , (A.2)

where

M (σ) =

−
γ
2 0 iΩ2
0 −γ

2 −iΩ2
iΩ −iΩ −γ

 . (A.3)

A.1.2 First-order: Filter

d

dt
〈aj〉 = − (κ+ i∆ωj) 〈aj〉 − Ej〈σ−〉, (A.4a)

d

dt
〈a†j〉 = − (κ− i∆ωj) 〈a†j〉 − E

∗
j 〈σ+〉. (A.4b)

https://www.github.com/jnga773/multi-mode-filter
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A.1.3 First-order: Filter / Atom

d

dt
〈ajσ〉 = M

(a)
j 〈ajσ〉+

 0

−1
2Ej (〈σz〉+ 1)

−γ〈aj〉+ Ej〈σ−〉

 , (A.5a)

d

dt
〈a†jσ〉 = M

(a†)
j 〈ajσ〉+

−
1
2E

∗
j (〈σz〉+ 1)

0

−γ〈a†j〉+ E∗j 〈σ+〉

 , (A.5b)

with

M
(a)
j = M (σ) − (κ+ i∆ωj)1, (A.6a)

M
(a†)
j = M (σ) − (κ− i∆ωj)1. (A.6b)

A.1.4 Second-order: Filter

d

dt
〈ajak〉 = − [2κ+ i (∆ωj +∆ωk)] 〈ajak〉 − Ej〈akσ−〉 − Ek〈ajσ−〉, (A.7a)

d

dt
〈a†jak〉 = − [2κ− i (∆ωj −∆ωk)] 〈a†jak〉 − E

∗
j 〈akσ+〉 − Ek〈a

†
jσ−〉, (A.7b)

d

dt
〈a†ja

†
k〉 = − [2κ− i (∆ωj +∆ωk)] 〈a†ja

†
k〉 − E

∗
j 〈a

†
kσ+〉 − E

∗
k 〈a

†
jσ+〉. (A.7c)

A.1.5 Second-order: Filter / Atom

d

dt
〈ajakσ〉 = M

(a2)
jk 〈ajakσ〉+

 0

−1
2Ej (〈akσz〉+ 〈ak〉)−

1
2Ek (〈ajσz〉+ 〈aj〉)

−γ〈ajak〉+ Ej〈akσ−〉+ Ekajσ−〉

 , (A.8a)

d

dt
〈a†jakσ〉 = M

(a†a)
jk 〈a†jakσ〉+

 −1
2E

∗
j 〈akσ+〉

−1
2Ek〈a

†
jσ−〉

−γ〈a†jak〉+ E∗j 〈akσ+〉+ Eka
†
jσ−〉

 , (A.8b)

d

dt
〈a†ja

†
kσ〉 = M

(a†
2
)

jk 〈a†ja
†
kσ〉+


−1

2E
∗
j

(
〈a†kσz〉+ 〈a

†
k〉
)
− 1

2E
∗
k

(
〈a†jσz〉+ 〈a

†
j〉
)

0

−γ〈a†ja
†
k〉+ E

∗
j 〈a

†
kσ+〉+ E

∗
ka

†
jσ+〉

 , (A.8c)

with

M
(a2)
jk = M (σ) − [2κ+ i (∆ωj +∆ωk)]1, (A.9a)

M
(a†a)
jk = M (σ) − [2κ− i (∆ωj −∆ωk)]1, (A.9b)

M
(a†

2
)

jk = M (σ) − [2κ− i (∆ωj +∆ωk)]1. (A.9c)



A.1 Moment Equations 133

A.1.6 Third-order: Filter

d

dt
〈a†jakal〉 = − [3κ− i (∆ωj −∆ωk −∆ωl)] 〈a†jakal〉

− E∗j 〈akalσ+〉 − Ek〈a
†
jalσ−〉 − El〈a

†
jakσ−〉, (A.10a)

d

dt
〈a†ja

†
kal〉 = − [3κ− i (∆ωj +∆ωk −∆ωl)] 〈a†ja

†
kal〉

− E∗j 〈a
†
kalσ+〉 − E

∗
k 〈a

†
jalσ+〉 − El〈a

†
ja

†
kσ−〉. (A.10b)

A.1.7 Third-order: Filter / Atom

d

dt
〈a†jakalσ〉 = M

(a†a2)
jkl 〈a†jakalσ〉

+


−1

2E
∗
j (〈akalσz〉+ 〈akal〉)

−1
2Ek

(
〈a†jalσz〉+ 〈a

†
jal〉

)
− 1

2El
(
〈a†jakσz〉+ 〈a

†
jak〉

)
−γ〈a†jakal〉+ E∗j 〈aklσ+〉+ Ek〈a

†
jalσ−〉+ El〈a

†
jakσ−〉

 , (A.11a)

d

dt
〈a†ja

†
kalσ〉 = M

(a†
2
a)

jkl 〈a†ja
†
kalσ〉

+


−1

2E
∗
j

(
〈a†kalσz〉+ 〈a

†
kal〉

)
− 1

2E
∗
k

(
〈a†jalσz〉+ 〈a

†
jal〉

)
−1

2El
(
〈a†ja

†
kσz〉+ 〈a

†
ja

†
k〉
)

−γ〈a†ja
†
kal〉+ E

∗
j 〈a

†
klσ+〉+ E

∗
k 〈a

†
jalσ+〉+ El〈a

†
ja

†
kσ−〉

 , (A.11b)

with

M
(a†a2)
jkl = M (σ) − [3κ− i (∆ωj −∆ωk −∆ωl)]1, (A.12a)

M
(a†

2
a)

jkl = M (σ) − [3κ− i (∆ωj +∆ωk −∆ωl)]1. (A.12b)

A.1.8 Fourth-order: Filter

d

dt
〈a†ja

†
kalam〉 = − [4κ− i (∆ωj +∆ωk) + i (∆ωl +∆ωm)] 〈a†ja

†
kalam〉

− E∗j 〈a
†
kalamσ+〉 − E

∗
k 〈a

†
jalmσ+〉

− El〈a†ja
†
kamσ−〉 − Ek〈a

†
ja

†
kalσ−〉. (A.13)
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A.2 Filtered First-Order Correlation Function

The first-order correlation function for the filtered output field is given by

G(1)(t, τ) = 〈A†(t+ τ)A(t)〉 =
N∑

j=−N

〈a†j(t+ τ)A(t)〉. (A.14)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈σ(t+ τ)A(t)〉 = M (σ)〈σ(t+ τ)A(t)〉+

 0

0

−γ〈A(t)〉

 , (A.15a)

and
d

dτ
〈a†j(t+ τ)A(t)〉 = − (κ− i∆ωj) 〈a†jA(t)〉 − E

∗
j 〈σ+(t+ τ)A(t)〉. (A.15b)

We solve these differential equations with the initial conditions at τ = 0,

〈σA(t)〉 =
N∑

k=−N

〈akσ(t)〉, (A.16a)

〈a†jA(t)〉 =
N∑

k=−N

〈a†jak(t)〉. (A.16b)

A.3 Filtered Second-Order Correlation Function

The second-order correlation function for the filtered output field is given by

G(2)(t, τ) = 〈A†(t)A†A(t+ τ)A(t)〉 =
N∑

j,k=−N

〈A†(t)a†kal(t+ τ)A(t)〉. (A.17)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈A†(t)σ(t+ τ)A(t)〉 = M (σ)〈A†(t)σ(t+ τ)A(t)〉+

 0

0

−γ〈A†A(t)〉

 , (A.18a)

and

d

dτ
〈A†(t)aj(t+ τ)A(t)〉 = − (κ+ i∆ωj) 〈A†(t)ajA(t)〉 − Ej〈A†(t)σ−(t+ τ)A(t)〉, (A.18b)

d

dτ
〈A†(t)a†j(t+ τ)A(t)〉 = − (κ− i∆ωj) 〈A†(t)a†jA(t)〉 − E

∗
j 〈A†(t)σ+(t+ τ)A(t)〉, (A.18c)
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and

d

dτ
〈A†(t)ajσ(t+ τ)A(t)〉 = M

(a)
j 〈A

†(t)ajσ(t+ τ)A(t)〉

+

 0

−1
2Ej

(
〈A†(t)σz(t+ τ)A(t)〉+ 〈A†A(t)〉

)
−γ〈A†(t)aj(t+ τ)A(t)〉+ Ej〈A†(t)σ−(t+ τ)A(t)〉

 , (A.18d)

d

dτ
〈A†(t)a†jσ(t+ τ)A(t)〉 = M

(a†)
j 〈A†(t)ajσ(t+ τ)A(t)〉

+

 −1
2E

∗
j

(
〈A†(t)σz(t+ τ)A(t)〉+ 〈A†A(t)〉

)
0

−γ〈A†(t)a†j(t+ τ)A(t)〉+ E∗j 〈A†(t)σ+(t+ τ)A(t)〉

 , (A.18e)

and

d

dτ
〈A†(t)a†jak(t+ τ)A(t)〉 = − [2κ− i (∆ωj −∆ωk)] 〈A†(t)a†jak(t+ τ)A(t)〉

− E∗j 〈A†(t)akσ+(t+ τ)A(t)〉

− Ek〈A†(t)a†jσ−(t+ τ)A(t)〉. (A.18f)

We solve these differential equations with the initial conditions at τ = 0,

〈A†σA(t)〉 =
N∑

j,m=−N

〈a†jamσ(t)〉, (A.19a)

〈A†a†kA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kam(t)〉, (A.19b)

〈A†alA(t)〉 =
N∑

j,m=−N

〈a†jalam(t)〉, (A.19c)

〈A†a†kσA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kamσ(t)〉, (A.19d)

〈A†alσA(t)〉 =
N∑

j,m=−N

〈a†jalamσ(t)〉, (A.19e)

〈A†a†kalA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kalam(t)〉. (A.19f)
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B Derivation of Equation (6.21)

While we can numerically calculate the frequency-filtered first-order correlation function
from the two-time correlation functions, Eqs. (A.15), we will instead work from the original
moment equations, Eqs. (6.17a) and (6.17c), and derive expressions in terms of the initial
conditions and steady states of the moment equations.

B.1 Analytic Solutions to The Moment Equations

Restating Eqs. (5.27) and (5.28), the Bloch equations in matrix form are

d

dt
〈σ〉 = M (σ)〈σ〉+B, (B.1)

where

〈σ〉 =

〈σ−〉〈σ+〉
〈σz〉

 , B =

 0

0

−γ

 , M (σ) =

−
γ
2 0 iΩ2
0 −γ

2 −iΩ2
iΩ −iΩ −γ

 . (B.2)

B.1.1 General solution to the homogeneous equation

The general solution for the homogeneous equation (B = 0) is given by

Ac(t) = C1e
λ1tv1 + C2e

λ2tv2 + C3e
λ3tv3. (B.3)

We then have to find the eigenvalues and eigenvectors of the matrix M (σ) which are

λ0 = −
γ

2
, v1 =

1

1

0

 , (B.4a)

λ± = −
(
3γ

4
± δ
)
, v2 =

1

γ ± 4δ

−2iΩ,2iΩ

γ ± 4δ

 , (B.4b)

where

δ =

√(γ
4

)2
− Ω2. (B.5)

The general solution is then〈σ−(t)〉〈σ+(t)〉
〈σz(t)〉


c

= C(1)e−
γ
2
t

1

1

0

+ C(2)e
−
(

3γ
4
+δ

)
t


−2iΩ
γ+4δ ,
2iΩ
γ+4δ ,

1

+ C(3)e
−
(

3γ
4
−δ

)
t


−2iΩ
γ−4δ ,
2iΩ
γ−4δ ,

1

 . (B.6)
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B.1.2 Particular solution to the nonhomogenous equation

Using variation of parameters, it can be shown for that the matrix, X(t), will be a solution
to the differential equation

d

dt
X(t) = MX(t). (B.7)

We then assume we can find a particular solution of the form

AP (t) = X(t)v(t), (B.8)

where
v(t) =

∫
X−1(t)B(t)dt. (B.9)

For the Bloch equations, we find the matrix to be

X(t) =


e−

γ
2
t −2iΩ

γ+4δ e
−
(

3γ
4
+δ

)
t −2iΩ

γ−4δ e
−
(

3γ
4
−δ

)
t

e−
γ
2
t 2iΩ

γ+4δe
−
(

3γ
4
+δ

)
t 2iΩ

γ−4δe
−
(

3γ
4
−δ

)
t

0 e
−
(

3γ
4
+δ

)
t

e
−
(

3γ
4
−δ

)
t

 , (B.10)

which has inverse

X−1(t) =


1
2e

γ
2
t 1

2e
γ
2
t 0

−i(γ+4δ)(γ−4δ)
32δΩ e

(
3γ
4
+δ

)
t i(γ+4δ)(γ−4δ)

32δΩ e

(
3γ
4
+δ

)
t γ+4δ

8δ e

(
3γ
4
+δ

)
t

i(γ+4δ)(γ−4δ)
32δΩ e

(
3γ
4
−δ

)
t −i(γ+4δ)(γ−4δ)

32δΩ e

(
3γ
4
−δ

)
t −γ−4δ

8δ e

(
3γ
4
−δ

)
t
.

 (B.11)

Then

X−1(t)B(t) =


0

−γ(γ+4δ)
8δ e

(
3γ
4
+δ

)
t

γ(γ−4δ)
8δ e

(
3γ
4
−δ

)
t

 (B.12)

and

v(t) =

∫
X−1(t)B(t)dt =

∫ 
0

−γ(γ+4δ)
8δ e

(
3γ
4
+δ

)
t

γ(γ−4δ)
8δ e

(
3γ
4
−δ

)
t

dt =


0

− γ(γ+4δ)
2δ(3γ+4δ)e

(
3γ
4
+δ

)
t

γ(γ−4δ)
2δ(3γ−4δ)e

(
3γ
4
−δ

)
t

 . (B.13)

Hence the particular solution is

AP (t) = X(t)v(t) =


−8iγΩ

9γ2−16δ2

8iγΩ
9γ2−16δ2

−8γ2

9γ2−16δ2

 , (B.14)
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which simplifies to

AP (t) =
1

γ2 + 2Ω2

−iγΩiγΩ

−γ2

 = 〈σ〉ss. (B.15)

B.1.3 General solution to the Bloch equations

The total solution to the Bloch equations is then

〈σ(t)〉 = C(1)e−
γ
2
t

1

1

0

+ C(2)e
−
(

3γ
4
+δ

)
t

 −11
γ+4δ
2iΩ

+ C(3)e
−
(

3γ
4
−δ

)
t

 −11
γ−4δ
2iΩ

+ 〈σ〉ss. (B.16)

With initial conditions,

〈σ(t = 0)〉 =

〈σ−(0)〉〈σ+(0)〉
〈σz(0)〉

 , (B.17)

we rearrange Eq. (B.16) to solve for the coefficients,

C(1) =
1

2

(
〈σ−(0)〉+ 〈σ+(0)〉

)
, (B.18a)

C(2) =
1

4δ

[
γ − 4δ

4

(
〈σ−(0)〉 − 〈σ+(0)〉

)
+ iΩ〈σz(0)〉

]
, (B.18b)

C(3) =
−1
4δ

[
γ + 4δ

4

(
〈σ−(0)〉 − 〈σ+(0)〉

)
+ iΩ〈σz(0)〉

]
. (B.18c)

B.1.4 Analytic solution of the photon creation operator

For the jth mode, the operator average for the photon creation operator evolves as

d

dt
〈a†j〉 = − (κ− i∆ωj) 〈a†j〉 − E

∗
j 〈σ+〉, (B.19)

where, from Eqs. (B.16) and (B.18),

〈σ+(t)〉 = C(1)e−
γ
2
t + 2iΩC(2)e

−
(

3γ
4
+δ

)
t
+ 2iΩC(3)e

−
(

3γ
4
−δ

)
t
+ 〈σ+〉ss. (B.20)

Using the integrating factor method,

〈a†j(t)〉e
−(κ−i∆ωj)t = −

∫
E∗j e(κ−i∆ωj)t

′〈σ+(t′)〉dt′

=

∫ [
−E∗jC(1)e−

( γ
2
−κ+i∆ωj

)
t′ − E∗jC(2)e

−
(

3γ
4
+δ−κ+i∆ωj

)
t′

−E∗jC(3)e
−
(

3γ
4
−δ−κ+i∆ωj

)
t′ − E∗j 〈σ+〉sse(κ−i∆ωj)t

′
]
dt′, (B.21)
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we find Eq. (B.19) has solution

〈a†j(t)〉 =
E∗jC(1)

γ
2 − (κ− i∆ωj)

e−
γ
2
t +

E∗jC(2)

3γ
4 + δ − (κ− i∆ωj)

e
−
(

3γ
4
+δ

)
t

+
E∗jC(3)

3γ
4 − δ − (κ− i∆ωj)

e
−
(

3γ
4
−δ

)
t
+ C

(4)
j e−(κ−i∆ωj)t + 〈a†j〉ss, (B.22)

where
〈a†j〉ss =

−E∗j 〈σ+〉ss
κ− i∆ωj

=
−iγΩE∗j

(γ2 + 2Ω2) (κ− i∆ωj)
. (B.23)

B.2 Steady State Solutions

Here we present a brief summary of the steady states needed to calculate Eqs. (6.22).

B.2.1 First-order moments

We have already derived the steady states for the Bloch equations and the first-order cavity
mode operator, 〈a†j〉ss. For the sake of clarity, we present them here again:

〈σ−〉ss =
−iγΩ

γ2 + 2Ω2
, (B.24a)

〈σ+〉ss =
iγΩ

γ2 + 2Ω2
, (B.24b)

〈σz〉ss =
−γ2

γ2 + 2Ω2
, (B.24c)

〈aj〉ss =
iγΩEj

(γ2 + 2Ω2) (κ+ i∆ωj)
, (B.24d)

〈a†j〉ss =
−iγΩE∗j

(γ2 + 2Ω2) (κ− i∆ωj)
. (B.24e)

B.2.2 First-order: Filter / Atom

Using the method of matrix inversion to calculate the steady state,

d

dt
〈A〉 = MA+B =⇒ 〈A〉ss = M−1B, (B.25)

we may calculate the steady state moments of

〈ajσ〉ss =

〈ajσ−〉ss〈ajσ+〉ss
〈ajσz〉ss

 . (B.26)
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From Eq. (A.5a), we have the evolution matrix,

M (aσ) =

−
(γ
2 + κ+ i∆ωj

)
0 iΩ2

0 −
(γ
2 + κ+ i∆ωj

)
−iΩ2

iΩ −iΩ − (γ + κ+ i∆ωj)

 , (B.27)

and nonhomogenous vector

B(aσ) =


0

−1
2Ej
(
〈σz〉ss + 1

)
−γ〈aj〉ss + Ej〈σ−〉ss

 =
−ΩEj

γ2 + 2Ω2

 0

Ω
iγ(γ+κ+i∆ωj)

κ+i∆ωj

 . (B.28)

Multiplying the inverse of the evolution matrix with this vector, we have

〈akσ+〉ss =
−Ω2Ek

[
Ω2 + 2

(γ
2 + κ+ i∆ωk

)2
+ γ

(
2 + γ

κ+i∆ωk

) (γ
2 + κ+ i∆ωk

)]
(γ
2 + κ+ i∆ωk

)
(γ2 + 2Ω2)

[
2Ω2 + 2

(γ
2 + κ+ i∆ωk

)2
+ γ

(γ
2 + κ+ i∆ωk

)] .
(B.29)

We then have

〈a†jσ−〉ss =
−Ω2E∗j

[
Ω2 + 2

(γ
2 + κ− i∆ωj

)2
+ γ

(
2 + γ

κ−i∆ωj

) (γ
2 + κ− i∆ωj

)]
(γ
2 + κ− i∆ωj

)
(γ2 + 2Ω2)

[
2Ω2 + 2

(γ
2 + κ− i∆ωj

)2
+ γ

(γ
2 + κ− i∆ωj

)] .
(B.30)

B.2.3 Second-order: Filter

Rearranging the moment equation, Eq. (A.7b), we find

〈a†jak〉ss =
−E∗j 〈akσ+〉ss − Ek〈a

†
jσ−〉ss

2κ− i (∆ωj −∆ωk)
. (B.31)
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C Moment Equations of the Two-Level Atom
and Two-Filter Cascaded System

Here we present all of the operator moment equations needed to calculate second-order
cross-correlation functions for the two-filter, multi-mode array filtered two-level atom. We first
show the moment equations, as derived from Eq. (6.31). These are then followed by the coupled
equations for the second-order cross-correlation functions.

The Fortan90 code used to numerically calculate these equations can be found at the fol-
lowing Github repository: github.com/jnga773/multi-mode-filter.

C.1 Moment Equations

We write these coupled moment equations in matrix form, where we use the notation

〈σ〉 =

〈σ−〉〈σ+〉
〈σz〉

 , 〈Xσ〉 =

〈Xσ−〉〈Xσ+〉
〈Xσz〉

 . (C.1)

C.1.1 Atomic Operator Moments

d

dt
〈σ〉 = M〈σ〉+

 0

0

−γ

 , (C.2)

where

M (σ) =

−
γ
2 0 iΩ2
0 −γ

2 −iΩ2
iΩ −iΩ −γ

 . (C.3)

C.1.2 First-order: Filter

d

dt
〈aj〉 = −

(
κa + i∆ω

(a)
j

)
〈aj〉 − E(a)j 〈σ−〉, (C.4a)

d

dt
〈a†j〉 = −

(
κa − i∆ω(a)

j

)
〈a†j〉 − E

(a)
j

∗
〈σ+〉. (C.4b)

d

dt
〈bj〉 = −

(
κb + i∆ω

(b)
j

)
〈bj〉 − E(b)j 〈σ−〉, (C.4c)

d

dt
〈b†j〉 = −

(
κb − i∆ω

(b)
j

)
〈b†j〉 − E

(b)
j

∗
〈σ+〉. (C.4d)

https://www.github.com/jnga773/multi-mode-filter


144 C Moment Equations of the Two-Level Atom and Two-Filter Cascaded System

C.1.3 First-order: Filter / Atom

d

dt
〈ajσ〉 = M

(a)
j 〈ajσ〉+

 0

−1
2E

(a)
j (〈σz〉+ 1)

−γ〈aj〉+ E(a)j 〈σ−〉

 , (C.5a)

d

dt
〈a†jσ〉 = M

(a†)
j 〈ajσ〉+

−
1
2E

(a)
j

∗
(〈σz〉+ 1)

0

−γ〈a†j〉+ E
(a)
j

∗
〈σ+〉

 , (C.5b)

d

dt
〈bjσ〉 = M

(b)
j 〈bjσ〉+

 0

−1
2E

(b)
j (〈σz〉+ 1)

−γ〈bj〉+ E(b)j 〈σ−〉

 , (C.5c)

d

dt
〈b†jσ〉 = M

(b†)
j 〈bjσ〉+

−
1
2E

(b)
j

∗
(〈σz〉+ 1)

0

−γ〈a†j〉+ E
(b)
j

∗
〈σ+〉

 , (C.5d)

with

M
(a)
j = M (σ) −

(
κa + i∆ω

(a)
j

)
1, (C.6a)

M
(a†)
j = M (σ) −

(
κa − i∆ω(a)

j

)
1, (C.6b)

M
(b)
j = M (σ) −

(
κb + i∆ω

(b)
j

)
1, (C.6c)

M
(b†)
j = M (σ) −

(
κb − i∆ω

(b)
j

)
1. (C.6d)

C.1.4 Second-order: Filter

d

dt
〈ajbk〉 = −

[
κa + κb + i

(
∆ω

(a)
j +∆ω

(b)
k

)]
〈ajbk〉 − E

(a)
j 〈bkσ−〉 − E

(b)
k 〈ajσ−〉, (C.7a)

d

dt
〈a†jb

†
k〉 = −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)]
〈a†jb

†
k〉 − E

(a)
j

∗
〈b†kσ+〉 − E

(b)
k

∗
〈a†jσ+〉, (C.7b)

d

dt
〈a†jak〉 = −

[
2κa − i

(
∆ω

(a)
j −∆ω

(a)
k

)]
〈a†jak〉 − E

(a)
j

∗
〈akσ+〉 − E

(a)
k 〈a

†
jσ−〉, (C.7c)

d

dt
〈b†jbk〉 = −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
〈b†jbk〉 − E

(b)
j

∗
〈bkσ+〉 − E

(b)
k 〈b

†
jσ−〉, (C.7d)

d

dt
〈a†jbk〉 = −

[
κa + κb − i

(
∆ω

(a)
j −∆ω

(b)
k

)]
〈a†jbk〉 − E

(a)
j

∗
〈bkσ+〉 − E

(b)
k 〈a

†
jσ−〉, (C.7e)

d

dt
〈b†jak〉 = −

[
κa + κb − i

(
∆ω

(b)
j −∆ω

(a)
k

)]
〈b†jak〉 − E

(b)
j

∗
〈akσ+〉 − E

(a)
k 〈b

†
jσ−〉. (C.7f)
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C.1.5 Second-order: Filter / Atom
d

dt
〈ajbkσ〉 = M

(ab)
jk 〈ajbkσ〉

+

 0

−1
2E

(a)
j (〈bkσz〉+ 〈bk〉)− 1

2Ek (〈ajσz〉+ 〈aj〉)
−γ〈ajbk〉+ E

(a)
j 〈bkσ−〉+ E

(b)
k 〈ajσ−〉

 , (C.8a)

d

dt
〈a†jb

†
kσ〉 = M

(a†b†)
jk a†jb

†
kσ〉

+


−1

2E
(a)
j

∗ (
〈b†kσz〉+ 〈b

†
k〉
)
− 1

2E
(b)
k

∗ (
〈a†jσz〉+ 〈a

†
j〉
)

0

−γ〈a†jb
†
k〉+ E

(a)
j

∗
〈b†kσ+〉+ E

(b)
k

∗
〈a†jσ+〉

 , (C.8b)

d

dt
〈a†jakσ〉 = M

(a†a)
jk 〈a†jakσ〉

+


−1

2E
(a)
j

∗
(〈akσz〉+ 〈ak〉)

−1
2E

(a)
k

(
〈a†jσz〉+ 〈a

†
j〉
)

−γ〈a†jak〉+ E
(a)
j

∗
〈akσ+〉+ E

(a)
k 〈a

†
jσ−〉

 , (C.8c)

d

dt
〈b†jbkσ〉 = M

(b†b)
jk 〈b†jbkσ〉

+


−1

2E
(b)
j

∗
(〈bkσz〉+ 〈bk〉)

−1
2E

(b)
k

(
〈b†jσz〉+ 〈b

†
j〉
)

−γ〈b†jbk〉+ E
(b)
j

∗
〈bkσ+〉+ E

(b)
k 〈b

†
jσ−〉

 , (C.8d)

d

dt
〈a†jbkσ〉 = M

(a†b)
jk 〈a†jbkσ〉

+


−1

2E
(a)
j

∗
(〈bkσz〉+ 〈bk〉)

−1
2E

(b)
k

(
〈a†jσz〉+ 〈a

†
j〉
)

−γ〈a†jbk〉+ E
(a)
j

∗
〈bkσ+〉+ E

(b)
k 〈a

†
jσ−〉

 , (C.8e)

d

dt
〈b†jakσ〉 = M

(b†a)
jk 〈b†jakσ〉

+


−1

2E
(b)
j

∗
(〈akσz〉+ 〈ak〉)

−1
2E

(a)
k

(
〈b†jσz〉+ 〈b

†
j〉
)

−γ〈b†jak〉+ E
(b)
j

∗
〈akσ+〉+ E

(a)
k 〈b

†
jσ−〉

 , (C.8f)

with

M
(ab)
jk = M (σ) −

[
κa + κb + i

(
∆ω

(a)
j +∆ω

(b)
k

)]
1, (C.9a)

M
(a†b†)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)]
1, (C.9b)

M
(a†a)
jk = M (σ) −

[
2κa − i

(
∆ω

(a)
j −∆ω

(a)
k

)]
1, (C.9c)

M
(b†b)
jk = M (σ) −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
1, (C.9d)

M
(a†b)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(a)
j −∆ω

(b)
k

)]
1, (C.9e)

M
(b†a)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(b)
j −∆ω

(a)
k

)]
1. (C.9f)
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C.1.6 Third-order: Filter

d

dt
〈a†jakbl〉 = −

[
2κa + κb − i

(
∆ω

(a)
j −∆ω

(a)
k −∆ω

(b)
l

)]
〈a†jakbl〉

− E(a)j

∗
〈akblσ+〉 − E

(a)
k 〈a

†
jblσ−〉 − E

(b)
l 〈a

†
jakσ−〉, (C.10a)

d

dt
〈b†jbkal〉 = −

[
κa + 2κb − i

(
∆ω

(b)
j −∆ω

(b)
k −∆ω

(a)
l

)]
〈b†jbkal〉

− E(b)j

∗
〈albkσ+〉 − E

(b)
k 〈b

†
jalσ−〉 − E

(a)
l 〈b

†
jbkσ−〉, (C.10b)

d

dt
〈b†ja

†
kal〉 = −

[
2κa + κb − i

(
∆ω

(b)
j +∆ω

(a)
k −∆ω

(a)
l

)]
〈b†ja

†
kal〉

− E(b)j

∗
〈a†kalσ+〉 − E

(a)
k

∗
〈b†jalσ+〉 − E

(a)
l 〈a

†
kb

†
jσ−〉, (C.10c)

d

dt
〈a†jb

†
kbl〉 = −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k −∆ω

(b)
l

)]
〈a†jb

†
kbl〉

− E(a)j

∗
〈b†kblσ+〉 − E

(b)
k

∗
〈a†jblσ+〉 − E

(b)
l 〈a

†
jb

†
kσ−〉. (C.10d)

C.1.7 Third-order: Filter / Atom

d

dt
〈a†jakblσ〉 = M

(a†ab)
jkl 〈a†jakblσ〉

+


−1

2E
(a)
j

∗
(〈akblσz〉+ 〈akbl〉)

−1
2E

(a)
k

(
〈a†jblσz〉+ 〈a

†
jbl〉
)
− 1

2E
(b)
l

(
〈a†jakσz〉+ 〈a

†
jak〉

)
−γ〈a†jakbl〉+ E

(a)
j

∗
〈akblσ+〉+ E

(a)
k 〈a

†
jblσ−〉+ E

(b)
l 〈a

†
jakσ−〉

 , (C.11a)

d

dt
〈b†jbkalσ〉 = M

(b†ba)
jkl 〈b†jbkalσ〉

+


−1

2E
(b)
j

∗
(〈albkσz〉+ 〈albk〉)

−1
2E

(b)
k

(
〈b†jalσz〉+ 〈b

†
jal〉

)
− 1

2E
(a)
l

(
〈b†jbkσz〉+ 〈b

†
jbk〉

)
−γ〈b†jbkal〉+ E

(b)
j

∗
〈albkσ+〉+ E

(b)
k 〈b

†
jalσ−〉+ E

(a)
l 〈b

†
jbkσ−〉

 , (C.11b)

d

dt
〈b†ja

†
kalσ〉 = M

(b†a†a)
jkl 〈b†ja

†
kalσ〉

+


−1

2E
(b)
j

∗ (
〈a†kalσz〉+ 〈a

†
kal〉

)
− 1

2E
(a)
k

∗ (
〈b†jalσz〉+ 〈b

†
jal〉

)
−1

2E
(a)
l

(
〈a†kb

†
jσz〉+ 〈a

†
kb

†
j〉
)

−γ〈b†ja
†
kal〉+ E

(b)
j

∗
〈a†kalσ+〉+ E

(a)
k

∗
〈b†jalσ+〉+ E

(a)
l 〈a

†
kb

†
jσ−〉

 , (C.11c)

d

dt
〈a†jb

†
kblσ〉 = M

(a†b†b)
jkl 〈a†jb

†
kblσ〉

+


−1

2E
(a)
j

∗ (
〈b†kblσz〉+ 〈b

†
kbl〉
)
− 1

2E
(b)
k

∗ (
〈a†jblσz〉+ 〈a

†
jbl〉
)

−1
2E

(b)
l

(
〈a†jb

†
kσz〉+ 〈a

†
jb

†
k〉
)

−γ〈a†jb
†
kbl〉+ E

(a)
j

∗
〈b†kblσ+〉+ E

(b)
k

∗
〈a†jblσ+〉+ E

(b)
l 〈a

†
jb

†
kσ−〉

 , (C.11d)
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with

M
(a†ab)
jkl = M (σ) −

[
2κa + κb − i

(
∆ω

(a)
j −∆ω

(a)
k −∆ω

(b)
l

)]
1, (C.12a)

M
(b†ba)
jkl = M (σ) −

[
κa + 2κb − i

(
∆ω

(b)
j −∆ω

(b)
k −∆ω

(a)
l

)]
1, (C.12b)

M
(b†a†a)
jkl = M (σ) −

[
2κa + κb − i

(
∆ω

(b)
j +∆ω

(a)
k −∆ω

(a)
l

)]
1, (C.12c)

M
(a†b†b)
jkl = M (σ) −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k −∆ω

(b)
l

)]
1. (C.12d)

C.1.8 Fourth-order: Filter

d

dt
〈a†jb

†
kblam〉 = −

[
2κa + 2κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)
+ i
(
∆ω

(b)
l +∆ω(a)

m

)]
〈a†jb

†
kblam〉

− E(a)j

∗
〈b†kblamσ+〉 − E

(b)
k

∗
〈a†jamblσ+〉

− E(b)l 〈b
†
ka

†
jamσ−〉 − E

(a)
m 〈a

†
jb

†
kblσ−〉. (C.13)

C.2 Filtered Cross-Correlation Function

The second-order cross-correlation function for the filtered output field is given by

G(2)(α, t;β, t+ τ) = 〈A†(t)B†B(t+ τ)A(t)〉 =
N∑

j,k=−N

〈A†(t)b†kbl(t+ τ)A(t)〉. (C.14)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈A†(t)σ(t+ τ)A(t)〉 = M (σ)〈A†(t)σ(t+ τ)A(t)〉+

 0

0

−γ〈A†A(t)〉

 , (C.15a)

and

d

dτ
〈A†(t)bj(t+ τ)A(t)〉 = −

(
κb + i∆ω

(b)
j

)
〈A†(t)bjA(t)〉

− E(b)j 〈A
†(t)σ−(t+ τ)A(t)〉, (C.15b)

d

dτ
〈A†(t)b†j(t+ τ)A(t)〉 = −

(
κb − i∆ω

(b)
j

)
〈A†(t)a†jA(t)〉

− E(b)j

∗
〈A†(t)σ+(t+ τ)A(t)〉, (C.15c)
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and

d

dτ
〈A†(t)bjσ(t+ τ)A(t)〉 = M

(b)
j 〈A

†(t)bjσ(t+ τ)A(t)〉

+

 0

−1
2E

(b)
j

(
〈A†(t)σz(t+ τ)A(t)〉+ 〈A†A(t)〉

)
−γ〈A†(t)bj(t+ τ)A(t)〉+ Ej〈A†(t)σ−(t+ τ)A(t)〉

 , (C.15d)

d

dτ
〈A†(t)b†jσ(t+ τ)A(t)〉 = M

(b†)
j 〈A†(t)bjσ(t+ τ)A(t)〉

+

 −1
2E

(b)
j

∗ (
〈A†(t)σz(t+ τ)A(t)〉+ 〈A†A(t)〉

)
0

−γ〈A†(t)b†j(t+ τ)A(t)〉+ E(b)j

∗
〈A†(t)σ+(t+ τ)A(t)〉

 , (C.15e)

and

d

dτ
〈A†(t)b†jbk(t+ τ)A(t)〉 = −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
〈A†(t)b†jbk(t+ τ)A(t)〉

− E(b)j

∗
〈A†(t)bkσ+(t+ τ)A(t)〉

− E(b)k 〈A
†(t)b†jσ−(t+ τ)A(t)〉. (C.15f)

We solve these differential equations with the initial conditions at τ = 0,

〈A†σA(t)〉 =
N∑

j,m=−N

〈a†jamσ(t)〉, (C.16a)

〈A†b†kA(t)〉 =
N∑

j,m=−N

〈b†ka
†
jam(t)〉, (C.16b)

〈A†blA(t)〉 =
N∑

j,m=−N

〈a†jam(t)bl〉, (C.16c)

〈A†b†kσA(t)〉 =
N∑

j,m=−N

〈b†ka
†
jamσ(t)〉, (C.16d)

〈A†blσA(t)〉 =
N∑

j,m=−N

〈a†jamblσ(t)〉, (C.16e)

〈A†b†kblA(t)〉 =
N∑

j,m=−N

〈a†jb
†
kblam(t)〉. (C.16f)
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D Derivation of the Dressed State Correlation
Functions of the Three-Level Atom

Here we present a detailed derivation of the dressed state correlation functions of the three-
level ladder type atom in Section 7.2.1. First we introduce some basic linear algebra theory,
and then derive the dressed state operators in the general case. Finally we present the dressed
state operators for the case of two-photon resonance, δ/Γ = 0.

D.1 Linear Algebra: Changing Basis

For two bases B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn} in some vector space V, there
exists some unique n× n matrix PB→C such that

[x]C = PB→C [x]B, (D.1)

where
PB→C = [[b1]C , [b2]C , . . . , [bn]C ] . (D.2)

For a diagonalisable matrix M in basis A = {|g〉 , |e〉 , |f〉} (A for atom), we have

D = S−1MS, (D.3)

with diagonal matrix
D = diag [λ1, λ2, λ3] , (D.4)

and
S = [v1,v2,v3] (D.5)

for eigenvalues λi and eigenvectors vi. We can define a basis of eigenvectors V = {v1,v2,v3}
such that we can rewrite the S matrix as

S =
[
[v1]A, [v2]A, [v3]A

]
= PV→A. (D.6)

We can then find, for a vector x,
[x]A = S [x]V , (D.7)

or, in the other direction,
[x]V = S−1 [x]A . (D.8)
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D.2 Eigenvalues and Eigenstates

Expanding the atomic lowering operator, Eq. (7.6), as,

Σ− = |g〉 〈e|+ ξ |e〉 〈f | = σeg− + ξσfe− , (D.9)

we can then expand the master equation, Eq. (7.7), in terms of each dipole operator,

dρ

dt
=

1

i~
[HA, ρ] +

Γ

2

(
2σeg− ρσ

eg
+ − σ

eg
+ σ

eg
− ρ− ρσ

eg
+ σ

ge
−
)

+
ξ2Γ

2

(
2σfe− ρσ

fe
+ − σ

fe
+ σ

fe
− ρ− ρσ

fe
+ σ

fe
−

)
+ Γξ

(
σeg− ρσ

fe
+ + σfe− ρσeg

)
. (D.10)

If we write the atomic states as basis vectors:

|g〉 −→

1

0

0

 , |e〉 −→

0

1

0

 , |f〉 −→

0

0

1

 , (D.11)

we can then write the Hamiltonian in matrix form:

HA −→

0 Ω
2 0

Ω
2 −

(
α
2 + δ

)
ξΩ2

0 ξΩ2 −2δ

 . (D.12)

D.2.1 Characteristic polynomial

To find the eigenvectors and eigenvalues (dressed states and frequencies), we must first solve
the characteristic polynomial of the Hamiltonian in matrix form, Eq. (8):

λ3 +
(α
2
+ 3δ

)
λ2 +

[
δ (2δ + α)−

(
1 + ξ2

)(Ω

2

)2
]
λ− 2δ

(
Ω

2

)2

= 0. (D.13)

Solving this cubic equation, we can get the dressed states and dressed frequencies, which we
generalise as

HA |m〉 = ~ωm |m〉 , HA |u〉 = ~ωu |u〉 , HA |l〉 = ~ωl |l〉 , (D.14)

where |m〉 , |u〉, and |l〉 represent the dressed “middle”, “upper”, and “lower” states, respectively.
As HA is a diagonalisable matrix, we can write

D = S−1HAS, (D.15)

where
S = (|m〉 , |u〉 , |l〉)T (D.16)
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gives the dressed states in the bare state basis, and

S−1 = (|g〉 , |e〉 , |f〉)T (D.17)

gives the bare states in the dressed state basis. This allows us to write

|g〉 −→

gmgu
gl

 , |e〉 −→

emeu
el

 , |f〉 −→

fmfu
fl

 . (D.18)

D.2.2 Atomic operators

From these we can write the atomic operators in the dressed state basis:

|g〉 〈e| −→

gmem gmeu gmel

guem gueu guel

glem gleu glel

 , |e〉 〈f | −→

emfm emfu emfl

eufm eufu eufl

elfm elfu elfl

 , (D.19)

and then

Σ− = |g〉 〈e|+ ξ |e〉 〈f | −→

em (gm + ξfm) gmeu + ξemfu gmel + ξemfm

guem + ξeufm eu (gu + ξfu) guel + ξeufl

glem + ξelfm gleu + ξelfu el (gl + ξfl)



−→

|m〉|u〉
|l〉


a1 a2 a3

a4 a5 a6

a7 a8 a9

(〈m| , 〈u| , 〈l|) (D.20)

We can then transform into an interaction picture with unitary evolution operator

U(t) = e
1
i~HAt, (D.21)

and the following commutation relations:

[HA, |m〉 〈m|] = 0, [HA, |m〉 〈u|] = ~ (ωm − ωu) |m〉 〈u| , [HA, |m〉 〈l|] = ~ (ωm − ωl) |m〉 〈l| ,
(D.22a)

[HA, |u〉 〈m|] = −~ (ωm − ωu) |u〉 〈m| , [HA, |u〉 〈u|] = 0, [HA, |u〉 〈l|] = ~ (ωu − ωl) |u〉 〈l| ,
(D.22b)

[HA, |l〉 〈m|] = −~ (ωm − ωl) |l〉 〈m| , [HA, |l〉 〈u|] = −~ (ωu − ωl) |l〉 〈u| , [HA, |l〉 〈l|] = 0.

(D.22c)

The bare atomic operators then transform as

Σ̃−(t) −→

 a1 a2e
i(ωm−ωu)t a3e

i(ωm−ωl)t

a4e
−i(ωm−ωu)t a5 a6e

i(ωu−ωl)t

a7e
−i(ωm−ωl)t a8e

−i(ωu−ωl)t a9

 , (D.23a)
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Σ̃+(t) −→

 a1 a4e
i(ωm−ωu)t a7e

i(ωm−ωl)t

a2e
−i(ωm−ωu)t a5 a8e

i(ωu−ωl)t

a3e
−i(ωm−ωl)t a6e

−i(ωu−ωl)t a9

 . (D.23b)

Transforming the master equation into the interaction picture,

dρ̃

dt
=

Γ

2

(
2Σ̃−ρ̃Σ̃+ − Σ̃+Σ̃−ρ̃− ρ̃Σ̃+Σ̃−

)
, (D.24)

with
ρ = U(t)ρ̃ U†(t), (D.25)

we may drop any fast oscillating terms to find that the three components of this transformed
master equation are:

Σ̃+Σ̃−(t) −→

a
2
1 + a24 + a27 0 0

0 a22 + a25 + a28 0

0 0 a23 + a26 + a29

 , (D.26)

and

Σ̃−ρ̃Σ̃+ = a21σmmρ̃σmm + a25σuuρ̃σuu + a29σllρ̃σll + a22σmuρ̃σum

+ a23σmlρ̃σlm + a24σumρ̃σmu + a27σlmρ̃σml

+ a26σulρ̃σlu + a28σluρ̃σul + a1a5

(
σmmρ̃σuu + σuuρ̃σmm

)
+ a1a9

(
σmmρ̃σll + σllρ̃σmm

)
+ a5a9

(
σuuρ̃σll + σllρ̃σuu

)
. (D.27)

Putting all of the pieces together, and transforming back out of the interaction picture, we have

dρ

dt
= −i[ωmσmm + ωuσuu + ωlσll, ρ]

+
Γa21
2

(
2σmmρσmm − σmmρ− ρσmm

)
+

Γa25
2

(
2σuuρσuu − σuuρ− ρσuu

)
+

Γa29
2

(
2σddρσdd − σddρ− ρσdd

)
+ Γa1a5

(
σmmρσuu + σuuρσdd

)
+ Γa1a9

(
σmmρσll + σllρσmm

)
+ Γa5a9

(
σuuρσll + σllρσuu

)
+

Γa22
2

(
2σmuρσum − σuuρ− ρσuu

)
+

Γa24
2

(
2σumρσmu − σmmρ− ρσmm

)
+

Γa23
2

(
2σmlρσlm − σllρ− ρσll

)
+

Γa27
2

(
2σlmρσml − σmmρ− ρσmm

)
+

Γa26
2

(
2σulρσlu − σllρ− ρσll

)
+

Γa28
2

(
σluρσul − σuuρ− ρσuu

)
. (D.28)
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D.2.3 Dressed state operator moment equations

Expanding the reduced density operator into the dressed states, we find the matrix elements
of the density operator evolve as:

ρ̇mm = −Γ
(
a24 + a27

)
ρmm + Γa22ρuu + Γa23ρll, (D.29a)

ρ̇mu = −
[
Γ

2

(
a21 + a22 + a24 + a25 + a27 + a28 − 2a1a5

)
+ i (ωm − ωu)

]
ρmu, (D.29b)

ρ̇ml = −
[
Γ

2

(
a21 + a23 + a24 + a26 + a27 + a29 − 2a1a9

)
+ i (ωm − ωl)

]
ρml, (D.29c)

ρ̇um = −
[
Γ

2

(
a21 + a22 + a24 + a25 + a27 + a28 − 2a1a5

)
− i (ωm − ωu)

]
ρum, (D.29d)

ρ̇uu = −Γ
(
a22 + a28

)
ρuu + Γa24ρmm + Γa26ρll, (D.29e)

ρ̇ul = −
[
Γ

2

(
a22 + a23 + a25 + a26 + a28 + a29 − 2a5a9

)
+ i (ωu − ωl)

]
ρul, (D.29f)

ρ̇lm = −
[
Γ

2

(
a21 + a23 + a24 + a26 + a27 + a29 − 2a1a9

)
− i (ωm − ωl)

]
ρlm, (D.29g)

ρ̇lu = −
[
Γ

2

(
a22 + a23 + a25 + a26 + a28 + a29 − 2a5a9

)
− i (ωu − ωl)

]
ρlu, (D.29h)

ρ̇ll = −Γ
(
a23 + a26

)
ρll + Γa27ρmm + Γa28ρuu. (D.29i)

All of the off-diagonal terms are completely uncoupled. For easy implementation with the
quantum regression equations, we write the density operator components as operator averages
and rewrite the above equations as:

d

dt

〈σmm〉
〈σuu〉
〈σll〉

 =

−Γ
(
a24 + a27

)
Γa22 Γa23

Γa24 −Γ
(
a22 + a28

)
Γa26

Γa27 Γa28 −Γ
(
a23 + a26

)

〈σmm〉
〈σuu〉
〈σll〉

 , (D.30)

and, with σum− = |m〉 〈u| , σml
− = |l〉 〈m| , σul− = |l〉 〈u|,

d

dt
〈σum− 〉 = −

[
Γum

2
+ i (ωu − ω0)

]
〈σum− 〉, (D.31a)

d

dt
〈σum+ 〉 = −

[
Γum

2
− i (ωu − ω0)

]
〈σum+ 〉, (D.31b)

d

dt
〈σml

− 〉 = −
[
Γml

2
+ i (ω0 − ωl)

]
〈σml

− 〉, (D.31c)

d

dt
〈σml

+ 〉 = −
[
Γml

2
− i (ω0 − ωl)

]
〈σml

+ 〉, (D.31d)

d

dt
〈σul− 〉 = −

[
Γul

2
+ i (ωu − ωl)

]
〈σul− 〉, (D.31e)

d

dt
〈σul+ 〉 = −

[
Γul

2
− i (ωu − ωl)

]
〈σul− 〉, (D.31f)
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where

Γum = Γ
(
a21 + a22 + a24 + a25 + a27 + a28 − a1a5

)
, (D.32a)

Γml = Γ
(
a21 + a23 + a24 + a26 + a27 + a29 − a1a9

)
, (D.32b)

Γul = Γ
(
a22 + a23 + a25 + a26 + a28 + a29 − a5a9

)
. (D.32c)

For the coupled set of equations, we can use reduce the number of equations with

ρmm + ρuu + ρll = 1 =⇒ ρll = 1− ρmm − ρuu, (D.33)

and hence
d

dt

(
〈σmm〉
〈σuu〉

)
=

(
−Γz1 Γz2

Γz3 −Γz4

)(
〈σmm〉
〈σuu〉

)
+

(
Γa23
Γa26

)
, (D.34)

with

z1 = a24 + a23 + a27, (D.35a)

z2 = a22 − a23, (D.35b)

z3 = a24 − a26, (D.35c)

z4 = a22 + a26 + a28. (D.35d)

D.2.4 Solving the moment equations

The dressed state raising and lowering operator equations have simple solutions due to their
uncoupled nature:

〈σum− (t)〉 = 〈σum− (0)〉e−
[
Γum

2
+iωum

]
t
, (D.36a)

〈σum+ (t)〉 = 〈σum+ (0)〉e−
[
Γum

2
−iωum

]
t
, (D.36b)

〈σml
− (t)〉 = 〈σml

− (0)〉e−
[
Γml
2

+iωml

]
t
, (D.36c)

〈σml
+ (t)〉 = 〈σml

+ (0)〉e−
[
Γml
2

−iωml

]
t
, (D.36d)

〈σul− (t)〉 = 〈σul− (0)〉e−
[
Γul
2

+iωul

]
t
, (D.36e)

〈σul+ (t)〉 = 〈σul+ (0)〉e−
[
Γul
2

−iωul

]
t
. (D.36f)

The diagonal moments have solutions(
〈σmm(t)〉
〈σuu(t)〉

)
=

C1e
λ+t

z1 − λ+

(
−z2

z1 − λ+

)
+

C2e
λ−t

z1 − λ−

(
−z2

z1 − λ−

)
, (D.37)

where

λ± = −Γ

2
(z1 + z4)±

Γ

2

√
z21 + z24 − 2 (z1z4 + z2z3). (D.38)
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E Moment Equations of the Three-Level Atom
and Single Filter Cascaded System

Here we present all of the operator moment equations needed to calculate first- and second-
order correlation functions for the multi-mode array filtered three-level atom. We first show
the moment equations, as derived from Eq. (7.31). These are then followed by the coupled
equations for both the filtered first- and second-order correlation functions.

The Fortan90 code used to numerically calculate these equations can be found at the fol-
lowing Github repository: github.com/jnga773/multi-mode-filter.

E.1 Moment Equations

We write these coupled moment equations in matrix form, where we use the notation

〈Σ〉 =



〈σgg〉
〈σeg

− 〉
〈σeg

+ 〉
〈σee〉
〈σfe

− 〉
〈σfe

+ 〉
〈σfg

− 〉
〈σfg

+ 〉


, 〈XΣ〉 =



〈Xσgg〉
〈Xσeg

− 〉
〈Xσeg

+ 〉
〈Xσee〉
〈Xσfe

− 〉
〈Xσfe

+ 〉
〈Xσfg

− 〉
〈Xσfg

+ 〉


. (E.1)

E.1.1 Atomic Operator Moments

d

dt
〈Σ〉 = M〈Σ〉+


0
0
0

Γξ2

iξΩ
2

−iξΩ
2

0
0

, (E.2)

where

M (Σ) =

0 −iΩ
2

iΩ
2

Γ 0 0 0 0

−iΩ
2

−
[
Γ
2
−i

(
α
2
+δ

)]
0 iΩ

2
Γξ 0 −iξΩ

2
0

iΩ
2

0 −
[
Γ
2
+i

(
α
2
+δ

)]
−iΩ

2
0 Γξ 0 iξΩ

2

−Γξ2 iΩ
2

−iΩ
2

−Γ
(
1+ξ2

)
−iξΩ

2
iξΩ

2
0 0

−iξΩ
2

0 0 −iξΩ −
[
Γ
2

(
1+ξ2

)
+i

(
α
2
−δ

)]
0 iΩ

2
0

iξΩ
2

0 0 iξΩ 0 −
[
Γ
2

(
1+ξ2

)
−i

(
α
2
−δ

)]
0 −iΩ

2

0 −iξΩ
2

0 0 iΩ
2

0 −
[
Γ
2
ξ2−2iδ

]
0

0 0 iξΩ
2

0 0 −iΩ
2

0 −
[
Γ
2
ξ2+2iδ

]


. (E.3)

https://www.github.com/jnga773/multi-mode-filter
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E.1.2 First-order: Filter

d

dt
〈aj〉 = − (κ+ i∆ωj) 〈aj〉 − Ej

(
〈σeg− 〉+ ξ〈σfe− 〉

)
, (E.4a)

d

dt
〈a†j〉 = − (κ− i∆ωj) 〈a†j〉 − Ej

∗
(
〈σeg+ 〉+ ξ〈σfe+ 〉

)
. (E.4b)

E.1.3 First-order: Filter / Atom

d

dt
〈ajΣ〉 = M

(a)
j 〈ajΣ〉+



−Ej〈σeg
− 〉

−Ejξ〈σfg
− 〉

−Ej〈σee〉
Γξ2〈aj〉−Ejξ〈σfe

− 〉
iξΩ

2
〈aj〉

−iξΩ
2
〈aj〉−Ejξ(1−〈σgg〉−〈σee〉)

0
−Ej〈σfe

+ 〉


, (E.5a)

d

dt
〈a†jΣ〉 = M

(a†)
j 〈ajΣ〉+



−Ej∗〈σeg
+ 〉

−Ej∗〈σee〉
−Ej∗ξ〈σfg

+ 〉
Γξ2〈a†j〉−Ej∗ξ〈σfe

+ 〉
iξΩ

2
〈a†j〉−Ej∗ξ(1−〈σgg〉−〈σee〉)

−iξΩ
2
〈a†j〉

−Ej∗〈σfe
− 〉

0


, (E.5b)

with

M
(a)
j = M (Σ) − (κ+ i∆ωj)1, (E.6a)

M
(a†)
j = M (Σ) − (κ− i∆ωj)1. (E.6b)

E.1.4 Second-order: Filter

d

dt
〈ajak〉 = − [2κ+ i (∆ωj +∆ωk)] 〈ajak〉

− Ej
(
〈akσeg− 〉+ ξ〈akσfe− 〉

)
− Ek

(
〈ajσeg− 〉+ ξ〈ajσfe− 〉

)
, (E.7a)

d

dt
〈a†jak〉 = − [2κ− i (∆ωj −∆ωk)] 〈a†jak〉 − Ej

∗〈akσ+〉

− Ej∗
(
〈akσeg+ 〉+ ξ〈akσfe+ 〉

)
− Ek

(
〈a†jσ

eg
− 〉+ ξ〈a†jσ

fe
− 〉
)
, (E.7b)

d

dt
〈a†ja

†
k〉 = − [2κ− i (∆ωj +∆ωk)] 〈a†ja

†
k〉 − Ej

∗〈a†kσ+〉

− Ej∗
(
〈a†kσ

eg
+ 〉+ 〈a

†
kσ

fe
+ 〉
)
− Ek∗

(
〈a†jσ

eg
+ 〉+ 〈a

†
jσ

fe
+ 〉
)
. (E.7c)
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E.1.5 Second-order: Filter / Atom

d

dt
〈ajakΣ〉 = M

(a2)
jk 〈ajakΣ〉

+



−Ej〈akσeg
− 〉−Ek〈ajσeg

− 〉
−Ejξ〈akσfg

− 〉−Ekξ〈ajσfg
− 〉

−Ej〈akσee〉−Ek〈ajσee〉
Γξ〈ajak〉−Ejξ〈akσfe

− 〉−Ekξ〈ajσfe
− 〉

iξΩ
2
〈ajak〉

−iξΩ
2
〈ajak〉−Ejξ(〈ak〉−〈akσgg〉−〈akσee〉)−Ekξ(〈aj〉−〈ajσgg〉−〈ajσee〉)

0
−Ej〈akσfe

+ 〉−Ek〈ajσfe
+ 〉


, (E.8a)

d

dt
〈a†jakΣ〉 = M

(a†a)
jk 〈a†jakΣ〉

+



−Ej∗〈akσeg
+ 〉−Ek〈a†jσ

eg
− 〉

−Ej∗〈akσee〉−Ekξ〈a†jσ
fg
− 〉

−Ej∗ξ〈akσfg
+ 〉−Ek〈a†jσ

ee〉
Γξ2〈a†jak〉−Ej∗ξ〈akσfe

+ 〉−Ekξ〈a†kσ
fe
− 〉

iξΩ
2
〈a†jak〉−Ej∗ξ(〈ak〉−〈akσgg〉−〈akσee〉)

−iξΩ
2
〈a†jak〉−Ekξ

(
〈a†j〉−〈a†jσ

gg〉−〈a†jσ
ee〉

)
−Ej∗〈akσfe

− 〉
−Ek〈a†jσ

fe
+ 〉


, (E.8b)

d

dt
〈a†ja

†
kΣ〉 = M

(a†
2
)

jk 〈a†ja
†
kΣ〉

+



−Ej∗〈a†kσ
eg
+ 〉−Ek∗〈a†jσ

eg
+ 〉

−Ej∗〈a†kσ
ee〉−Ek∗〈a†jσ

ee〉
−Ej∗ξ〈a†kσ

fg
+ 〉−Ek∗ξ〈a†jσ

fg
+ 〉

Γξ2〈a†ja
†
k〉−Ej∗ξ〈a†kσ

fe
+ 〉−Ek∗ξ〈a†jσ

fe
+ 〉

iξΩ
2
〈a†ja

†
k〉−Ej∗ξ

(
〈a†k〉−〈a†kσ

gg〉−〈a†kσ
ee〉

)
−Ek∗ξ

(
〈a†j〉−〈a†jσ

gg〉−〈a†jσ
ee〉

)
−iξΩ

2
〈a†ja

†
k〉

−Ej∗〈a†kσ
fe
− 〉−Ek∗〈a†jσ

fe
− 〉

0


, (E.8c)

with

M
(a2)
jk = M (Σ) − [2κ+ i (∆ωj +∆ωk)]1, (E.9a)

M
(a†a)
jk = M (Σ) − [2κ− i (∆ωj −∆ωk)]1, (E.9b)

M
(a†

2
)

jk = M (Σ) − [2κ− i (∆ωj +∆ωk)]1. (E.9c)
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E.1.6 Third-order: Filter

d

dt
〈a†jakal〉 = − [3κ− i (∆ωj −∆ωk −∆ωl)] 〈a†jakal〉

− Ej∗
(
〈akalσeg+ 〉+ ξ〈akalσfe+ 〉

)
− Ek

(
〈a†jalσ

eg
− 〉+ ξ〈a†jalσ

fe
− 〉
)

− El
(
〈a†jakσ

eg
− 〉+ ξ〈a†jakσ

fe
− 〉
)
, (E.10a)

d

dt
〈a†ja

†
kal〉 = − [3κ− i (∆ωj +∆ωk −∆ωl)] 〈a†ja

†
kal〉

− Ej∗
(
〈a†kalσ

eg
+ 〉+ ξ〈a†kalσ

fe
+ 〉
)

− Ek∗
(
〈a†jalσ

eg
+ 〉+ ξ〈a†jalσ

fe
+ 〉
)

− El
(
〈a†ja

†
kσ

eg
− 〉+ ξ〈a†ja

†
kσ

fe
− 〉
)
. (E.10b)

E.1.7 Third-order: Filter / Atom

d

dt
〈a†jakalΣ〉 = M

(a†a2)
jkl 〈a†jakalΣ〉

+



−Ej∗〈akalσeg
+ 〉−Ek〈a†jalσ

eg
− 〉−El〈a†jakσ

eg
− 〉

−Ej∗〈akalσee〉−Ekξ〈a†jalσ
fg
− 〉−Elξ〈a†jakσ

fg
− 〉

−Ej∗ξ〈akalσfg
+ 〉−Ek〈a†jalσ

ee〉−El〈a†jakσ
ee〉

Γξ2〈a†jakal〉−Ej∗ξ〈akalσfe
+ 〉−Ekξ〈a†jalσ

fe
− 〉−Elξ〈a†jakσ

fe
− 〉

iξΩ
2
〈a†jakal〉−Ej∗ξ(〈akal〉−〈akalσgg〉−〈akalσee〉)

−iξΩ
2
〈a†jakal〉−Ekξ

(
〈a†jak〉−〈a†jalσ

gg〉−〈a†jalσ
ee〉

)
−Elξ

(
〈a†jal〉−〈a†jakσ

gg〉−〈a†jakσ
ee〉

)
−Ej∗〈akalσfe

− 〉
−Ek〈a†jalσ

fe
+ 〉−El〈a†jakσ

fe
− 〉


, (E.11a)

d

dt
〈a†ja

†
kalΣ〉 = M

(a†
2
a)

jkl 〈a†ja
†
kalΣ〉

+



−Ej∗〈a†kalσ
eg
+ 〉−Ek∗〈a†jalσ

eg
+ 〉−El〈a†ja

†
kσ

eg
− 〉

−Ej∗〈a†kalσ
ee〉−Ek∗〈a†jalσ

ee〉−Elξ〈a†ja
†
kσ

fg
− 〉

−Ej∗ξ〈a†kalσ
fg
+ 〉−Ek∗ξ〈a†jalσ

fg
+ 〉−El〈a†ja

†
kσ

ee〉
Γξ2〈a†ja

†
kal〉−Ej∗ξ〈a†kalσ

fe
+ 〉−Ek∗ξ〈a†jalσ

fe
+ 〉−Elξ〈a†ja

†
kσ

fe
− 〉

iξΩ
2
〈a†ja

†
kal〉−Ej∗ξ

(
〈a†kal〉−〈a†kalσ

gg〉−〈a†kalσ
ee〉

)
−Ej∗ξ

(
〈a†jal〉−〈a†jalσ

gg〉−〈a†jalσ
ee〉

)
−iξΩ

2
〈a†ja

†
kal〉−Elξ

(
〈a†ja

†
k〉−〈a†ja

†
kσ

gg〉−〈a†ja
†
kσ

ee〉
)

−Ej∗〈a†kalσ
fe
− 〉−Ek∗〈a†jalσ

fe
− 〉

−El〈a†ja
†
kσ

fe
+ 〉


, (E.11b)

with

M
(a†a2)
jkl = M (Σ) − [3κ− i (∆ωj −∆ωk −∆ωl)]1, (E.12a)

M
(a†

2
a)

jkl = M (Σ) − [3κ− i (∆ωj +∆ωk −∆ωl)]1. (E.12b)
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E.1.8 Fourth-order: Filter

d

dt
〈a†ja

†
kalam〉 = − [4κ− i (∆ωj +∆ωk) + i (∆ωl +∆ωm)] 〈a†ja

†
kalam〉

− Ej∗
(
〈a†kalamσ

eg
+ 〉+ ξ〈a†kalamσ

fe
+ 〉
)

− Ek∗
(
〈a†jalamσ

eg
+ 〉+ ξ〈a†jalamσ

fe
+ 〉
)

− El
(
〈a†ja

†
kamσ

eg
− 〉+ ξ〈a†ja

†
kamσ

fe
− 〉
)

− Em
(
〈a†ja

†
kalσ

eg
− 〉+ ξ〈a†ja

†
kalσ

fe
− 〉
)
. (E.13)

E.2 Filtered First-Order Correlation Function

The first-order correlation function for the filtered output field is given by

G(1)(t, τ) = 〈A†(t+ τ)A(t)〉 =
N∑

j=−N

〈a†j(t+ τ)A(t)〉. (E.14)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈Σ(t+ τ)A(t)〉 = M (Σ)〈Σ(t+ τ)A(t)〉+

 0

0

−γ〈A(t)〉

 , (E.15a)

and

d

dτ
〈a†j(t+ τ)A(t)〉 = − (κ− i∆ωj) 〈a†jA(t)〉

− Ej∗
(
〈σeg+ (t+ τ)A(t)〉+ ξ〈σfe+ (t+ τ)A(t)〉

)
. (E.15b)

We solve these differential equations with the initial conditions at τ = 0,

〈ΣA(t)〉 =
N∑

k=−N

〈akΣ(t)〉, (E.16a)

〈a†jA(t)〉 =
N∑

k=−N

〈a†jak(t)〉. (E.16b)
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E.3 Filtered Second-Order Correlation Function

The second-order correlation function for the filtered output field is given by

G(2)(t, τ) = 〈A†(t)A†A(t+ τ)A(t)〉 =
N∑

j,k=−N

〈A†(t)a†kal(t+ τ)A(t)〉. (E.17)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈A†(t)Σ(t+ τ)A(t)〉 = M (Σ)〈A†(t)Σ(t+ τ)A(t)〉+


0
0
0

Γξ2〈A†A(t)〉
iξΩ

2
〈A†A(t)〉

−iξΩ
2
〈A†A(t)〉
0
0

, (E.18a)

and

d

dτ
〈A†(t)aj(t+ τ)A(t)〉 = − (κ+ i∆ωj) 〈A†(t)ajA(t)〉

− Ej∗
(
〈A†(t)σeg− (t+ τ)A(t)〉+ ξ〈A†(t)σfe− (t+ τ)A(t)〉

)
, (E.18b)

d

dτ
〈A†(t)a†j(t+ τ)A(t)〉 = − (κ− i∆ωj) 〈A†(t)a†jA(t)〉

− Ej∗
(
〈A†(t)σeg+ (t+ τ)A(t)〉+ ξ〈A†(t)σfe+ (t+ τ)A(t)〉

)
, (E.18c)

and

d

dτ
〈A†(t)ajΣ(t+ τ)A(t)〉 = M

(a)
j 〈A

†(t)ajΣ(t+ τ)A(t)〉

+



−Ej〈A†(t)σeg
− (t+τ)A(t)〉

−Ejξ〈A†(t)σfg
− (t+τ)A(t)〉

−Ej〈A†(t)σee(t+τ)A(t)〉
Γξ2〈A†(t)aj(t+τ)A(t)〉−Ejξ〈A†(t)σfe

− (t+τ)A(t)〉
iξΩ

2
〈A†(t)aj(t+τ)A(t)〉

−iξΩ
2
〈A†(t)aj(t+τ)A(t)〉−Ejξ

(
1−〈A†(t)σgg(t+τ)A(t)〉−〈A†(t)σee(t+τ)A(t)〉

)
0

−Ej〈A†(t)σfe
+ (t+τ)A(t)〉


, (E.18d)

d

dτ
〈A†(t)a†jΣ(t+ τ)A(t)〉 = M

(a†)
j 〈A†(t)a†jΣ(t+ τ)A(t)〉

+



−Ej∗〈A†(t)σeg
+ (t+τ)A(t)〉

−Ej∗〈A†(t)σee(t+τ)A(t)〉
−Ej∗ξ〈A†(t)σfg

+ (t+τ)A(t)〉
Γξ2〈A†(t)a†j(t+τ)A(t)〉−Ej∗ξ〈A†(t)σfe

+ (t+τ)A(t)〉
iξΩ

2
〈A†(t)a†j(t+τ)A(t)〉−Ej∗ξ

(
1−〈A†(t)σgg(t+τ)A(t)〉−〈A†(t)σee(t+τ)A(t)〉

)
−iξΩ

2
〈A†(t)a†j(t+τ)A(t)〉

−Ej∗〈A†(t)σfe
− (t+τ)A(t)〉
0


, (E.18e)

and
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d

dτ
〈A†(t)a†jak(t+ τ)A(t)〉 = − [2κ− i (∆ωj −∆ωk)] 〈A†(t)a†jak(t+ τ)A(t)〉

− Ej∗〈A†(t)akσ+(t+ τ)A(t)〉

− Ek〈A†(t)a†jσ−(t+ τ)A(t)〉. (E.18f)

We solve these differential equations with the initial conditions at τ = 0,

〈A†ΣA(t)〉 =
N∑

j,m=−N

〈a†jamΣ(t)〉, (E.19a)

〈A†a†kA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kak(t)〉, (E.19b)

〈A†alA(t)〉 =
N∑

j,m=−N

〈a†jalak(t)〉, (E.19c)

〈A†a†kΣA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kakΣ(t)〉, (E.19d)

〈A†alΣA(t)〉 =
N∑

j,m=−N

〈a†jalakΣ(t)〉, (E.19e)

〈A†a†kalA(t)〉 =
N∑

j,m=−N

〈a†ja
†
kalam(t)〉. (E.19f)
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F Moment Equations of the Three-Level Atom
and Two-Filter Cascaded System

Here we present all of the operator moment equations needed to calculate second-order
cross-correlation functions for the two-filter multi-mode array filtered three-level atom. We first
show the moment equations, as derived from Eq. (7.39). These are then followed by the coupled
equations for the second-order cross-correlation function.

The Fortan90 code used to numerically calculate these equations can be found at the fol-
lowing Github repository: github.com/jnga773/multi-mode-filter.

F.1 Moment Equations

We write these coupled moment equations in matrix form, where we use the notation

〈σ〉 =



〈σgg〉
〈σeg

− 〉
〈σeg

+ 〉
〈σee〉
〈σfe

− 〉
〈σfe

+ 〉
〈σfg

− 〉
〈σfg

+ 〉


, 〈Xσ〉 =



〈Xσgg〉
〈Xσeg

− 〉
〈Xσeg

+ 〉
〈Xσee〉
〈Xσfe

− 〉
〈Xσfe

+ 〉
〈Xσfg

− 〉
〈Xσfg

+ 〉


. (F.1)

F.1.1 Atomic Operator Moments

d

dt
〈σ〉 = M〈σ〉+


0
0
0

Γξ2

iξΩ
2

−iξΩ
2

0
0

, (F.2)

where

M (Σ) =

0 −iΩ
2

iΩ
2

Γ 0 0 0 0

−iΩ
2

−
[
Γ
2
−i

(
α
2
+δ

)]
0 iΩ

2
Γξ 0 −iξΩ

2
0

iΩ
2

0 −
[
Γ
2
+i

(
α
2
+δ

)]
−iΩ

2
0 Γξ 0 iξΩ

2

−Γξ2 iΩ
2

−iΩ
2

−Γ
(
1+ξ2

)
−iξΩ

2
iξΩ

2
0 0

−iξΩ
2

0 0 −iξΩ −
[
Γ
2

(
1+ξ2

)
+i

(
α
2
−δ

)]
0 iΩ

2
0

iξΩ
2

0 0 iξΩ 0 −
[
Γ
2

(
1+ξ2

)
−i

(
α
2
−δ

)]
0 −iΩ

2

0 −iξΩ
2

0 0 iΩ
2

0 −
[
Γ
2
ξ2−2iδ

]
0

0 0 iξΩ
2

0 0 −iΩ
2

0 −
[
Γ
2
ξ2+2iδ

]


. (F.3)

https://www.github.com/jnga773/multi-mode-filter
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F.1.2 First-order: Filter

d

dt
〈aj〉 = −

(
κa + i∆ω

(a)
j

)
〈aj〉

− E(a)j

(
〈σeg− 〉+ ξ〈σfe− 〉

)
, (F.4a)

d

dt
〈a†j〉 = −

(
κa − i∆ω(a)

j

)
〈a†j〉

− E(a)j

∗ (
〈σeg+ 〉+ ξ〈σfe+ 〉

)
. (F.4b)

d

dt
〈bj〉 = −

(
κb + i∆ω

(b)
j

)
〈bj〉

− E(b)j

(
〈σeg− 〉+ ξ〈σeg− 〉

)
, (F.4c)

d

dt
〈b†j〉 = −

(
κb − i∆ω

(b)
j

)
〈b†j〉

− E(b)j

∗ (
〈σeg+ 〉+ ξ〈σeg+ 〉

)
. (F.4d)

F.1.3 First-order: Filter / Atom

d

dt
〈ajσ〉 = M

(a)
j 〈ajσ〉+



−E(a)
j 〈σeg

− 〉

−E(a)
j ξ〈σfg

− 〉

−E(a)
j 〈σee〉

Γξ2〈aj〉−E(a)
j ξ〈σfe

− 〉
iξΩ

2
〈aj〉

−iξΩ
2
〈aj〉−E(a)

j ξ(1−〈σgg〉−〈σee〉)
0

−E(a)
j 〈σfe

+ 〉


, (F.5a)

d

dt
〈a†jσ〉 = M

(a†)
j 〈a†jσ〉+



−E(a)
j

∗
〈σeg

+ 〉

−E(a)
j

∗
〈σee〉

−E(a)
j

∗
ξ〈σfg

+ 〉

Γξ2〈a†j〉−E(a)
j

∗
ξ〈σfe

+ 〉

iξΩ
2
〈a†j〉−E(a)

j

∗
ξ(1−〈σgg〉−〈σee〉)

−iξΩ
2
〈a†j〉

−E(a)
j

∗
〈σfe

− 〉
0


, (F.5b)

d

dt
〈bjσ〉 = M

(b)
j 〈bjσ〉+



−E(b)
j 〈σeg

− 〉

−E(b)
j ξ〈σfg

− 〉

−E(b)
j 〈σee〉

Γξ2〈bj〉−E(b)
j ξ〈σfe

− 〉
iξΩ

2
〈bj〉

−iξΩ
2
〈bj〉−E(b)

j ξ(1−〈σgg〉−〈σee〉)
0

−E(b)
j 〈σfe

+ 〉


, (F.5c)
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d

dt
〈b†jσ〉 = M

(b†)
j 〈b†jσ〉+



−E(b)
j

∗
〈σeg

+ 〉

−E(b)
j

∗
〈σee〉

−E(b)
j

∗
ξ〈σfg

+ 〉

Γξ2〈b†j〉−E(b)
j

∗
ξ〈σfe

+ 〉

iξΩ
2
〈b†j〉−E(b)

j

∗
ξ(1−〈σgg〉−〈σee〉)

−iξΩ
2
〈b†j〉

−E(b)
j

∗
〈σfe

− 〉
0


, (F.5d)

with

M
(a)
j = M (σ) −

(
κa + i∆ω

(a)
j

)
1, (F.6a)

M
(a†)
j = M (σ) −

(
κa − i∆ω(a)

j

)
1, (F.6b)

M
(b)
j = M (σ) −

(
κb + i∆ω

(b)
j

)
1, (F.6c)

M
(b†)
j = M (σ) −

(
κb − i∆ω

(b)
j

)
1. (F.6d)

F.1.4 Second-order: Filter

d

dt
〈ajbk〉 = −

[
κa + κb + i

(
∆ω

(a)
j +∆ω

(b)
k

)]
〈ajbk〉

− E(a)j

(
〈bkσeg− 〉+ ξ〈bkσfe− 〉

)
− E(b)k

(
〈ajσeg− 〉+ ξ〈ajσfe− 〉

)
, (F.7a)

d

dt
〈a†jb

†
k〉 = −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)]
〈a†jb

†
k〉

− E(a)j

∗ (
〈b†kσ

eg
+ 〉+ ξ〈b†kσ

fe
+ 〉
)
− E(b)k

∗ (
〈a†jσ

eg
+ 〉+ ξ〈a†jσ

eg
+ 〉
)
, (F.7b)

d

dt
〈a†jak〉 = −

[
2κa − i

(
∆ω

(a)
j −∆ω

(a)
k

)]
〈a†jak〉

− E(a)j

∗ (
〈akσeg+ 〉+ ξ〈akσfe+ 〉

)
− E(a)k

(
〈a†jσ

eg
− 〉+ ξ〈a†jσ

fe
− 〉
)
, (F.7c)

d

dt
〈b†jbk〉 = −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
〈b†jbk〉

− E(b)j

∗ (
〈bkσeg+ 〉+ ξ〈bkσfe+ 〉

)
− E(b)k

(
〈b†jσ

eg
− 〉+ ξ〈b†jσ

fe
− 〉
)
, (F.7d)

d

dt
〈a†jbk〉 = −

[
κa + κb − i

(
∆ω

(a)
j −∆ω

(b)
k

)]
〈a†jbk〉

− E(a)j

∗ (
〈bkσeg+ 〉+ ξ〈bkσfe+ 〉

)
− E(b)k

(
〈a†jσ

eg
− 〉+ ξ〈a†jσ

fe
− 〉
)
, (F.7e)

d

dt
〈b†jak〉 = −

[
κa + κb − i

(
∆ω

(b)
j −∆ω

(a)
k

)]
〈b†jak〉

− E(b)j

∗ (
〈akσeg+ 〉+ ξ〈akσfe+ 〉

)
− E(a)k

(
〈b†jσ

eg
− 〉+ ξ〈b†jσ

fe
− 〉
)
. (F.7f)
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F.1.5 Second-order: Filter / Atom

d

dt
〈ajbkσ〉 = M

(ab)
jk 〈ajbkσ〉

+



−E(a)
j 〈bkσeg

− 〉−E(b)
k 〈ajσeg

− 〉

−E(a)
j ξ〈bkσfg

− 〉−E(b)
k ξ〈ajσfg

− 〉

−E(a)
j 〈bkσee〉−E(b)

k 〈ajσee〉

Γξ〈ajbk〉−E(a)
j ξ〈bkσfe

− 〉−E(b)
k ξ〈ajσfe

− 〉
iξΩ

2
〈ajbk〉

−iξΩ
2
〈ajbk〉−E(a)

j ξ(〈bk〉−〈bkσgg〉−〈bkσee〉)−E(b)
k ξ(〈aj〉−〈ajσgg〉−〈ajσee〉)

0

−E(a)
j 〈bkσfe

+ 〉−E(b)
k 〈ajσfe

+ 〉


, (F.8a)

d

dt
〈a†jb

†
kσ〉 = M

(a†b†)
jk a†jb

†
kσ〉

+



−E(a)
j

∗
〈b†kσ

eg
+ 〉−E(b)

k

∗
〈a†jσ

eg
+ 〉

−E(a)
j

∗
〈b†kσ

ee〉−E(b)
k

∗
〈a†jσ

ee〉

−E(a)
j

∗
ξ〈b†kσ

fg
+ 〉−E(b)

k

∗
ξ〈a†jσ

fg
+ 〉

Γξ2〈a†jb
†
k〉−E(a)

j

∗
ξ〈b†kσ

fe
+ 〉−E(b)

k

∗
ξ〈a†jσ

fe
+ 〉

iξΩ
2
〈a†jb

†
k〉−E(a)

j

∗
ξ
(
〈b†k〉−〈b†kσ

gg〉−〈b†kσ
ee〉

)
−E(b)

k

∗
ξ
(
〈a†j〉−〈a†jσ

gg〉−〈a†jσ
ee〉

)
−iξΩ

2
〈a†jb

†
k〉

−E(a)
j

∗
〈b†kσ

fe
− 〉−E(b)

k

∗
〈a†jσ

fe
− 〉

0


, (F.8b)

d

dt
〈a†jakσ〉 = M

(a†a)
jk 〈a†jakσ〉

+



−E(a)
j

∗
〈akσeg

+ 〉−E(a)
k 〈a†jσ

eg
− 〉

−E(a)
j

∗
〈akσee〉−E(a)

k ξ〈a†jσ
fg
− 〉

−E(a)
j

∗
ξ〈akσfg

+ 〉−E(a)
k 〈a†jσ

ee〉

Γξ2〈a†jak〉−E(a)
j

∗
ξ〈akσfe

+ 〉−E(a)
k ξ〈a†kσ

fe
− 〉

iξΩ
2
〈a†jak〉−E(a)

j

∗
ξ(〈ak〉−〈akσgg〉−〈akσee〉)

−iξΩ
2
〈a†jak〉−E(a)

k ξ
(
〈a†j〉−〈a†jσ

gg〉−〈a†jσ
ee〉

)
−E(a)

j

∗
〈akσfe

− 〉

−E(a)
k 〈a†jσ

fe
+ 〉


, (F.8c)

d

dt
〈b†jbkσ〉 = M

(b†b)
jk 〈b†jbkσ〉

+



−E(b)
j

∗
〈bkσeg

+ 〉−E(b)
k 〈b†jσ

eg
− 〉

−E(b)
j

∗
〈bkσee〉−E(b)

k ξ〈b†jσ
fg
− 〉

−E(b)
j

∗
ξ〈bkσfg

+ 〉−E(b)
k 〈b†jσ

ee〉

Γξ2〈b†jbk〉−E(b)
j

∗
ξ〈bkσfe

+ 〉−E(b)
k ξ〈b†kσ

fe
− 〉

iξΩ
2
〈b†jbk〉−E(b)

j

∗
ξ(〈bk〉−〈bkσgg〉−〈bkσee〉)

−iξΩ
2
〈b†jbk〉−E(b)

k ξ
(
〈b†j〉−〈b†jσ

gg〉−〈b†jσ
ee〉

)
−E(b)

j

∗
〈bkσfe

− 〉

−E(b)
k 〈b†jσ

fe
+ 〉


, (F.8d)
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d

dt
〈a†jbkσ〉 = M

(a†b)
jk 〈a†jbkσ〉

+



−E(a)
j

∗
〈bkσeg

+ 〉−E(b)
k 〈a†jσ

eg
− 〉

−E(a)
j

∗
〈bkσee〉−E(b)

k ξ〈a†jσ
fg
− 〉

−E(a)
j

∗
ξ〈bkσfg

+ 〉−E(b)
k 〈a†jσ

ee〉

Γξ2〈a†jbk〉−E(a)
j

∗
ξ〈bkσfe

+ 〉−E(b)
k ξ〈a†kσ

fe
− 〉

iξΩ
2
〈a†jbk〉−E(a)

j

∗
ξ(〈bk〉−〈bkσgg〉−〈bkσee〉)

−iξΩ
2
〈a†jbk〉−E(b)

k ξ
(
〈a†j〉−〈a†jσ

gg〉−〈a†jσ
ee〉

)
−E(a)

j

∗
〈bkσfe

− 〉

−E(b)
k 〈a†jσ

fe
+ 〉


, (F.8e)

d

dt
〈b†jakσ〉 = M

(b†a)
jk 〈b†jakσ〉

+



−E(b)
j

∗
〈akσeg

+ 〉−E(a)
k 〈b†jσ

eg
− 〉

−E(b)
j

∗
〈akσee〉−E(a)

k ξ〈b†jσ
fg
− 〉

−E(b)
j

∗
ξ〈akσfg

+ 〉−E(a)
k 〈b†jσ

ee〉

Γξ2〈b†jak〉−E(b)
j

∗
ξ〈akσfe

+ 〉−E(a)
k ξ〈b†kσ

fe
− 〉

iξΩ
2
〈b†jak〉−E(b)

j

∗
ξ(〈ak〉−〈akσgg〉−〈akσee〉)

−iξΩ
2
〈b†jak〉−E(a)

k ξ
(
〈b†j〉−〈b†jσ

gg〉−〈b†jσ
ee〉

)
−E(b)

j

∗
〈akσfe

− 〉

−E(a)
k 〈b†jσ

fe
+ 〉


, (F.8f)

with

M
(ab)
jk = M (σ) −

[
κa + κb + i

(
∆ω

(a)
j +∆ω

(b)
k

)]
1, (F.9a)

M
(a†b†)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)]
1, (F.9b)

M
(a†a)
jk = M (σ) −

[
2κa − i

(
∆ω

(a)
j −∆ω

(a)
k

)]
1, (F.9c)

M
(b†b)
jk = M (σ) −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
1, (F.9d)

M
(a†b)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(a)
j −∆ω

(b)
k

)]
1, (F.9e)

M
(b†a)
jk = M (σ) −

[
κa + κb − i

(
∆ω

(b)
j −∆ω

(a)
k

)]
1. (F.9f)

F.1.6 Third-order: Filter

d

dt
〈a†jakbl〉 = −

[
2κa + κb − i

(
∆ω

(a)
j −∆ω

(a)
k −∆ω

(b)
l

)]
〈a†jakbl〉, (F.10a)

d

dt
〈b†jbkal〉 = −

[
κa + 2κb − i

(
∆ω

(b)
j −∆ω

(b)
k −∆ω

(a)
l

)]
〈b†jbkal〉, (F.10b)

d

dt
〈b†ja

†
kal〉 = −

[
2κa + κb − i

(
∆ω

(b)
j +∆ω

(a)
k −∆ω

(a)
l

)]
〈b†ja

†
kal〉, (F.10c)

d

dt
〈a†jb

†
kbl〉 = −

[
κa + 2κb − i

(
∆ω

(a)
j +∆ω

(b)
k −∆ω

(b)
l

)]
〈a†jb

†
kbl〉. (F.10d)
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F.1.7 Third-order: Filter / Atom

d

dt
〈a†jakblσ〉 = M

(a†ab)
jkl 〈a†jakblσ〉

+



−E(a)
j

∗
〈akblσeg

+ 〉−E(a)
k 〈a†jblσ

eg
− 〉−E(b)

l 〈a†jakσ
eg
− 〉

−E(a)
j

∗
〈akblσee〉−E(a)

k ξ〈a†jblσ
fg
− 〉−E(b)

l ξ〈a†jakσ
fg
− 〉

−E(a)
j

∗
ξ〈akblσfg

+ 〉−E(a)
k 〈a†jblσ

ee〉−E(b)
l 〈a†jakσ

ee〉

Γξ2〈a†jakbl〉−E(a)
j

∗
ξ〈akblσfe

+ 〉−E(a)
k ξ〈a†jblσ

fe
− 〉−E(b)

l ξ〈a†jakσ
fe
− 〉

iξΩ
2
〈a†jakbl〉−E(a)

j

∗
ξ(〈akbl〉−〈akblσgg〉−〈akblσee〉)

−iξΩ
2
〈a†jakbl〉−E(a)

k ξ
(
〈a†jak〉−〈a†jblσ

gg〉−〈a†jblσ
ee〉

)
−E(b)

l ξ
(
〈a†jbl〉−〈a†jakσ

gg〉−〈a†jakσ
ee〉

)
−E(a)

j

∗
〈akblσfe

− 〉

−E(a)
k 〈a†jblσ

fe
+ 〉−E(b)

l 〈a†jakσ
fe
− 〉


, (F.11a)

d

dt
〈b†jbkalσ〉 = M

(b†ba)
jkl 〈b†jbkalσ〉

+



−E(b)
j

∗
〈bkalσeg

+ 〉−E(b)
k 〈b†jalσ

eg
− 〉−E(a)

l 〈b†jbkσ
eg
− 〉

−E(b)
j

∗
〈bkalσee〉−E(b)

k ξ〈b†jalσ
fg
− 〉−E(a)

l ξ〈b†jbkσ
fg
− 〉

−E(b)
j

∗
ξ〈bkalσfg

+ 〉−E(b)
k 〈b†jalσ

ee〉−E(a)
l 〈b†jbkσ

ee〉

Γξ2〈b†jbkal〉−E(b)
j

∗
ξ〈bkalσfe

+ 〉−E(b)
k ξ〈b†jalσ

fe
− 〉−E(a)

l ξ〈b†jbkσ
fe
− 〉

iξΩ
2
〈b†jbkal〉−E(b)

j

∗
ξ(〈bkal〉−〈bkalσgg〉−〈bkalσee〉)

−iξΩ
2
〈b†jbkal〉−E(b)

k ξ
(
〈b†jbk〉−〈b†jalσ

gg〉−〈b†jalσ
ee〉

)
−E(a)

l ξ
(
〈b†jal〉−〈b†jbkσ

gg〉−〈b†jbkσ
ee〉

)
−E(b)

j

∗
〈bkalσfe

− 〉

−E(b)
k 〈b†jalσ

fe
+ 〉−E(a)

l 〈b†jbkσ
fe
− 〉


, (F.11b)

d

dt
〈b†ja

†
kalσ〉 = M

(b†a†a)
jkl 〈b†ja

†
kalσ〉

+



−E(b)
j

∗
〈a†kalσ

eg
+ 〉−E(a)

k

∗
〈b†jalσ

eg
+ 〉−E(a)

l 〈b†ja
†
kσ

eg
− 〉

−E(b)
j

∗
〈a†kalσ

ee〉−E(a)
k

∗
〈b†jalσ

ee〉−E(a)
l ξ〈b†ja

†
kσ

fg
− 〉

−E(b)
j

∗
ξ〈a†kalσ

fg
+ 〉−E(a)

k

∗
ξ〈b†jalσ

fg
+ 〉−E(a)

l 〈b†ja
†
kσ

ee〉

Γξ2〈b†ja
†
kal〉−E(b)

j

∗
ξ〈a†kalσ

fe
+ 〉−E(a)

k

∗
ξ〈b†jalσ

fe
+ 〉−E(a)

l ξ〈b†ja
†
kσ

fe
− 〉

iξΩ
2
〈b†ja

†
kal〉−E(b)

j

∗
ξ
(
〈a†kal〉−〈a†kalσ

gg〉−〈a†kalσ
ee〉

)
−E(a)

k

∗
ξ
(
〈b†jal〉−〈b†jalσ

gg〉−〈b†jalσ
ee〉

)
−iξΩ

2
〈b†ja

†
kal〉−E(a)

l ξ
(
〈b†ja

†
k〉−〈b†ja

†
kσ

gg〉−〈b†ja
†
kσ

ee〉
)

−E(b)
j

∗
〈a†kalσ

fe
− 〉−E(a)

k

∗
〈b†jalσ

fe
− 〉

−E(a)
l 〈b†ja

†
kσ

fe
+ 〉


, (F.11c)

d

dt
〈a†jb

†
kblσ〉 = M

(a†b†b)
jkl 〈a†jb

†
kblσ〉

+



−E(a)
j

∗
〈b†kblσ

eg
+ 〉−E(b)

k

∗
〈a†jblσ

eg
+ 〉−E(b)

l 〈a†jb
†
kσ

eg
− 〉

−E(a)
j

∗
〈b†kblσ

ee〉−E(b)
k

∗
〈a†jblσ

ee〉−E(b)
l ξ〈a†jb

†
kσ

fg
− 〉

−E(a)
j

∗
ξ〈b†kblσ

fg
+ 〉−E(b)

k

∗
ξ〈a†jblσ

fg
+ 〉−E(b)

l 〈a†jb
†
kσ

ee〉

Γξ2〈a†jb
†
kbl〉−E(a)

j

∗
ξ〈b†kblσ

fe
+ 〉−E(b)

k

∗
ξ〈a†jblσ

fe
+ 〉−E(b)

l ξ〈a†jb
†
kσ

fe
− 〉

iξΩ
2
〈a†jb

†
kbl〉−E(a)

j

∗
ξ
(
〈b†kbl〉−〈b†kblσ

gg〉−〈b†kblσ
ee〉

)
−E(b)

k

∗
ξ
(
〈a†jbl〉−〈a†jblσ

gg〉−〈a†jblσ
ee〉

)
−iξΩ

2
〈a†jb

†
kbl〉−E(b)

l ξ
(
〈a†jb

†
k〉−〈a†jb

†
kσ

gg〉−〈a†jb
†
kσ

ee〉
)

−E(a)
j

∗
〈b†kblσ

fe
− 〉−E(b)

k

∗
〈a†jblσ

fe
− 〉

−E(b)
l 〈a†jb

†
kσ

fe
+ 〉


. (F.11d)
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with

M
(a†ab)
jkl = M (σ) −

[
2κa + κb − i

(
∆ω

(a)
j −∆ω

(a)
k −∆ω

(b)
l

)]
1, (F.12a)

M
(b†ba)
jkl = M (σ) −

[
κa + 2κb − i

(
∆ω

(b)
j −∆ω

(b)
k −∆ω

(a)
l

)]
1, (F.12b)

M
(b†a†a)
jkl = M (σ) −

[
2κa + κb − i

(
∆ω

(b)
j +∆ω

(a)
k −∆ω

(a)
l

)]
1, (F.12c)

M
(a†b†b)
jkl = M (σ) −

[
κa + 2κb − i

(
∆ω

(a)
j +∆ω

(b)
k −∆ω

(b)
l

)]
1. (F.12d)

F.1.8 Fourth-order: Filter

d

dt
〈a†jb

†
kblam〉 = −

[
2κa + 2κb − i

(
∆ω

(a)
j +∆ω

(b)
k

)
+ i
(
∆ω

(b)
l +∆ω(a)

m

)]
〈a†jb

†
kblam〉

− E(a)j

∗
〈b†kblamσ

eg
+ 〉 − E

(b)
k

∗
〈a†jamblσ

eg
+ 〉

− E(b)l 〈b
†
ka

†
jamσ

eg
− 〉 − E(a)m 〈a

†
jb

†
kblσ

eg
− 〉. (F.13)

F.2 Filtered Cross-Correlation Function

The second-order cross-correlation function for the filtered output field is given by

G(2)(α, t;β, t+ τ) = 〈A†(t)B†B(t+ τ)A(t)〉 =
N∑

j,k=−N

〈A†(t)b†kbl(t+ τ)A(t)〉. (F.14)

We use the quantum regression equations to solve for this with the following moment equations:

d

dτ
〈A†(t)Σ(t+ τ)A(t)〉 = M (Σ)〈A†(t)σ(t+ τ)A(t)〉+


0
0
0

Γξ2〈A†A(t)〉
iξΩ

2
〈A†A(t)〉

−iξΩ
2
〈A†A(t)〉
0
0

, (F.15a)

and

d

dτ
〈A†(t)bj(t+ τ)A(t)〉 = −

(
κb + i∆ω

(b)
j

)
〈A†(t)bj(t+ τ)A(t)〉

− E(b)j

(
〈A†(t)σeg− (t+ τ)A(t)〉+ ξ〈A†(t)σeg− (t+ τ)A(t)〉

)
, (F.15b)

d

dτ
〈A†(t)b†j(t+ τ)A(t)〉 = −

(
κb − i∆ω

(b)
j

)
〈A†(t)b†j(t+ τ)A(t)〉

− E(b)j

∗ (
〈A†(t)σeg+ (t+ τ)A(t)〉+ ξ〈A†(t)σeg+ (t+ τ)A(t)〉

)
, (F.15c)
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and

d

dτ
〈A†(t)bjΣ(t+ τ)A(t)〉 = M

(b)
j 〈A

†(t)bjΣ(t+ τ)A(t)〉

+



−E(b)
j 〈A†(t)σeg

− (t+τ)A(t)〉

−E(b)
j ξ〈A†(t)σfg

− (t+τ)A(t)〉

−E(b)
j 〈A†(t)σee(t+τ)A(t)〉

Γξ2〈A†(t)bj(t+τ)A(t)〉−E(b)
j ξ〈A†(t)σfe

− (t+τ)A(t)〉
iξΩ

2
〈A†(t)bj(t+τ)A(t)〉

−iξΩ
2
〈A†(t)bj(t+τ)A(t)〉−E(b)

j ξ
(
1−〈A†(t)σgg(t+τ)A(t)〉−〈A†(t)σee(t+τ)A(t)〉

)
0

−E(b)
j 〈A†(t)σfe

+ (t+τ)A(t)〉


, (F.15d)

d

dτ
〈A†(t)b†jΣ(t+ τ)A(t)〉 = M

(b†)
j 〈A†(t)b†jΣ(t+ τ)A(t)〉

+



−E(b)
j

∗
〈A†(t)σeg

+ (t+τ)A(t)〉

−E(b)
j

∗
〈A†(t)σee(t+τ)A(t)〉

−E(b)
j

∗
ξ〈A†(t)σfg

+ (t+τ)A(t)〉

Γξ2〈A†(t)b†j(t+τ)A(t)〉−E(b)
j

∗
ξ〈A†(t)σfe

+ (t+τ)A(t)〉

iξΩ
2
〈A†(t)b†j(t+τ)A(t)〉−E(b)

j

∗
ξ
(
1−〈A†(t)σgg(t+τ)A(t)〉−〈A†(t)σee(t+τ)A(t)〉

)
−iξΩ

2
〈A†(t)b†j(t+τ)A(t)〉

−E(b)
j

∗
〈A†(t)σfe

− (t+τ)A(t)〉
0


, (F.15e)

and

d

dτ
〈A†(t)b†jbk(t+ τ)A(t)〉 = −

[
2κb − i

(
∆ω

(b)
j −∆ω

(b)
k

)]
〈A†(t)b†jbk(t+ τ)A(t)〉

− E(b)j

∗ (
〈A†(t)bkσ

eg
+ (t+ τ)A(t)〉+ ξ〈A†(t)bkσ

fe
+ (t+ τ)A(t)〉

)
− E(b)k

(
〈A†(t)b†jσ

eg
− (t+ τ)A(t)〉+ ξ〈A†(t)b†jσ

fe
− (t+ τ)A(t)〉

)
(F.15f)

We solve these differential equations with the initial conditions at τ = 0,

〈A†ΣA(t)〉 =
N∑

j,m=−N

〈a†jamΣ(t)〉, (F.16a)

〈A†b†kA(t)〉 =
N∑

j,m=−N

〈b†ka
†
jam(t)〉, (F.16b)

〈A†blA(t)〉 =
N∑

j,m=−N

〈a†jam(t)bl〉, (F.16c)

〈A†b†kΣA(t)〉 =
N∑

j,m=−N

〈b†ka
†
jamΣ(t)〉, (F.16d)

〈A†blΣA(t)〉 =
N∑

j,m=−N

〈a†jamblΣ(t)〉, (F.16e)

〈A†b†kblA(t)〉 =
N∑

j,m=−N

〈a†jb
†
kblam(t)〉. (F.16f)
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