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Abstract

In this thesis we consider a three-level ladder-type atom driven by a coherent laser. When

driven on two-photon resonance, the atom is excited into its highest state by absorbing two photons

simultaneously, followed by a cascaded decay.

Employing techniques derived from the Lindblad master equation, we solve for the first-order

correlation function, from which we can calculate the fluorescence spectrum. We find that under

a strong drive field, the fluorescence spectrum contains up to seven different peaks. We aim to

explain the emergence of these peaks by looking at transitions amongst the atom’s dressed states.

We then aim to characterise the nature of the emitted light by investigating the second-order

correlation function. In order to obtain a more precise picture of the photon correlations, we

introduce a frequency filtering technique that allows us to isolate individual transitions. Measuring

the photon correlations of these transitions provides a more complete picture of the role of specific

dressed states of the system. We provide mostly numerical surveys of the fluorescence spectrum

and correlations, with some analytic expressions to verify results.
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1 Introduction

In 1956, Robert Hanbury Brown and Richard Q. Twiss aimed two photo-multipliers at Sirius

and found there was a strong correlation of the intensity fluctuations of the amplified anode currents

[1–4]; apparently, photons from the star were tending to arrive in groups or “bunches”, rather than

at random as was expected of chaotic light.

While the theory of the time worked in a classical optics setting, there remained the question

of whether or not this bunching effect could be described quantum mechanically. It remained open

until 1963, the year in which Roy J. Glauber developed his ”quantum theory for optical coherence”,

bridging the gap between the well-studied coherence of classical optics and quantum mechanics [5,

6].

While photon bunching could be explained classically, its converse, photon antibunching [7, 8],

was recognized as a purely quantum effect, which could only be understood from the quantum

description of light. Photon antibunching was first experimentally observed in 1977 [9]. Since

then many more experiments have followed, employing a variety of methods, further confirming

the quantum nature of these effects. Recent growth in the field of quantum networks, for example,

has shown the importance of single-photon sources as a means of transferring quantum information

[10], where photon antibunching provides the standard method used to verify the single-photon

character of a source. Antibunched photon correlations have even been observed in circuit quantum

electrodynamics (QED) [11], where Josephson junctions are configured in a superconducting circuit

to provide a microwave analogue of cavity QED.

This thesis is largely motivated by the experimental work of Gasparinetti et al. on a three-

level ladder-type artificial atom – fabricated as a superconducting circuit – driven on two-photon

resonance [12, 13]. The “atom” absorbs two photons simultaneously and, given the three-level

ladder structure, each absorption of a photon pair is followed by a cascaded decay accompanied by

two-photon emission. We propose to explain this two-photon resonance fluorescence by adopting

a dressed state picture based on the eigenstates of the interaction Hamiltonian. In particular, we

aim to investigate the recently observed dressed states of an artificial three-level atom [14].

It is well known for a two-level atom that, upon strong coherent driving, the fluorescence

spectrum splits into a Mollow triplet [15] due to transitions amongst its dressed states. While there

has been previous work on two- and three-level systems, showing related behaviour [16–20], we

take a slightly different approach such as that used in recent works (see Refs. [21, 22]). In order

to completely characterise the photon correlations of the three-level atom, we employ a filtering

technique that allows us to isolate individual transitions between the dressed states. In this way we

aim to build a complete picture of the dressed state transitions that connects the photon correlations

to our understanding of the two-photon resonance fluorescence spectrum.



2 1 . Introduction

We begin in chapter 2 by quantising the electromagnetic field, where we find its mathematical

analogue in a collection of harmonic oscillators. We are then able to use our result to derive a

Hamiltonian of a three-level ladder-type atom interacting with the quantised electromagnetic field.

We make use of two important approximations to do so: the rotating wave approximation and the

dipole approximation. Finally, coherent driving is introduced, modelling an atom in an experimental

setting where it is driven by a laser.

In chapter 3 we make the description more physically realistic by accounting for spontaneous

emission, a dissipative process. Using the Born and Markov approximations, we derive an equation

of motion for the atom viewed as a quantum open system, known as the Lindblad master equation.

Using master equation techniques we can solve for two important quantities: the first-order and

second-order correlation functions. These are two-time correlation functions, which are not inher-

ently simple to compute. We therefore derive an expression for these correlation functions using

quantum regression formulas. Finally, we introduce a different method of treating the dissipative

system, quantum trajectory theory, which involves integrating a differential equation for a pure state

vector with stochastic quantum “jumps”.

In chapter 4 we give a brief review of circuit QED and how the motivating work of this thesis

was carried out. We then derive a time-independent Hamiltonian for the driven-three level atom in

terms of four important variables: the detuning of the drive frequency from two-photon resonance;

the anharmonicity of the three energy levels; the drive field strength; and the dipole moment

ratio. With the time-independent Hamiltonian we perform a numerical survey of the steady state

populations of the atoms under different parameter regimes. We then derive a Hamiltonian where

we have adiabatically eliminated the intermediate state and, using this Hamiltonian, we derive

analytic expressions for the steady state density operator.

Chapter 5 begins with a discussion on the eigenstates of the full Hamiltonian, including inter-

actions, also known as the dressed states. We derive expressions for the dressed states and their

respective eigenfrequencies for the case of two-photon resonance. We wish to study the fluorescence

spectrum of the atom, so we start by giving an overview of first-order coherence from a classical and

quantum perspective. We then derive an expression for the field radiated from the atom in terms of

the atomic dipole operator. Following the pattern of chapter 4, we then provide a numerical survey

of the incoherent fluorescence spectrum for different drive strengths and dipole moment ratios. We

find that when the atom is driven at single-photon resonance, the fluorescence spectrum resembles

that of a driven two-level atom. We then explain the change in the fluorescence spectrum when

driven on two-photon resonance by referring to the dressed states and the various transitions that

are made possible as the drive strength is increased.

Finally, in chapter 6, we investigate the second-order coherence of the atom. We start by intro-

ducing the second-order correlation function and the three main classes of second-order coherence

– bunched light, coherent light, and anti-bunched light, where antibunched light is an inherently

quantum phenomenon. We start by investigating the unfiltered photon correlations. We then

implement a filter into the system by coupling the fluorescence into a ring cavity, allowing us to
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investigate the auto-correlation of individual transitions. The transitions we are most interested in

are the dressed state transitions, which give rise to the multi-peak fluorescence spectrum. Finally,

we take the filtering one step further by coupling the fluorescence into a second filter cavity. This

allows us to cross-correlate photons from different transitions, with the goal of verifying intuitions

drawn from the dressed state picture.

The thesis concludes in chapter 7 where we present a short summary of the topics covered with

some concluding remarks. We also discuss possible avenues for extending this work.
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2 Three Level Atom Interacting with the Quantised

Radiation Field

In this chapter we aim to set the foundations of knowledge for this thesis by introducing key

principles that the following chapters will build upon. We start by representing the electromagnetic

field in a way that will capture the uniquely quantum mechanical properties. As we are interested in

a three-level ladder type atom, we will then develop a model of a three-level atom interacting with

the quantised radiation field by making use of two main approximations: the dipole approximation

and the rotating wave approximation.

2.1 Free Electromagnetic Field

Starting by considering the field classically we aim to represent the electromagnetic field in

terms of quantum mechanical operators. We follow the steps of Walls and Milburn (Ref. [23],

ch. 2) by quantising the field in terms of a vector potential and equating it to a set of orthogonal

independent harmonic oscillators.

2.1.1 Plane wave expansion of the field

We start with Maxwell’s equations for the electric and magnetic fields in free space, E and B,

respectively;

∇ ·E(r, t) = 0, (2.1a)

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1b)

∇ ·B(r, t) = 0, (2.1c)

∇×B(r, t) =
1

c2

∂E(r, t)

∂t
, (2.1d)

where c = (µ0ε0)−1/2 is the speed of light in a vacuum, and µ0 and ε0 are the free space magnetic

permeability and electric permittivity, respectively. Introducing the vector potential A(r, t) and

using the Coulomb gauge

∇ ·A(r, t) = 0, (2.2)

we write the magnetic and electric fields as

E(r, t) = −∂A(r, t)

∂t
, (2.3a)
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B(r, t) = ∇×A(r, t). (2.3b)

Substituting these expressions into Eq. (2.1d), we then find that A(r, t) is a solution to the wave

equation

∇2A(r, t)− 1

c2

∂2A(r, t)

∂2t
= 0. (2.4)

We now consider the field to be contained inside a cubic volume V = L3, such that we may extend

any solution to neighbouring volumes with periodic boundary conditions and expand the general

solution in terms of a discrete set of orthogonal mode functions;

A(r, t) =
∑
k

Ak(t)eik·r + c.c., (2.5)

with the sum ranging over all wavevectors k = kxx̂ + kyŷ + kzẑ, where

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (2.6)

with nx, ny, nz ∈ Z. The mode functions satisfy the transversality condition, Eq. (2.2), if

k ·A = 0. (2.7)

Thus there exist two polarisation vectors, êk,λ=1,2, orthogonal to k that satisfy the condition. The

vector potential is then expanded as

A(r, t) =
∑
k,λ

Ak,λ(t)êk,λe
ik·r + c.c, (2.8)

where a scale factor has been introduced so that the amplitudes Ak,λ(t) and A∗k,λ(t) are dimension-

less. Substituting this vector potential into the wave equation, Eq. (2.4), yields

k2Ak(t) +
1

c2

d2

dt2
Ak,λ(t) = 0, (2.9)

which has the solution

Ak,λ(t) = Ak,λe
−iωkt, (2.10)

where we use the dispersion relation ωk = kc. Using this vector potential, the electric and magnetic

fields may be written in the form

E(r, t) =
∑
k,λ

iωkAk,λêk,λe
i(k·r−ωkt) + c.c., (2.11a)

B(r, t) =
∑
k,λ

i (k × êk,λ)Ak,λe
i(k·r−ωkt) + c.c.. (2.11b)
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2.1.2 Quantisation of the field: a collection of harmonic oscillators

The energy of the field in the cubic volume V = L3 is given by the Hamiltonian

H =

∫
V

d3r

[
ε0
2
|E(r, t)|2 +

1

2µ0
|B(r, t)|2

]
. (2.12)

As the energy is a conserved quantity we may set t = 0 and consider

H =

∫
V

d3r

ε0
2

∑
k,λ

iωkAk,λêk,λe
ik·r + c.c.

2

+
1

2µ0

∑
k,λ

i (k × êk,λ)Ak,λe
ik·r + c.c.

2 .
(2.13)

Noting the orthonormality of the mode functions and the fact that the wavevectors k are orthogonal

to the polarisation vectors êk,λ, the above expression simplifies to

H = 2ε0V
∑
k,λ

ω2
k |Ak,λ|2 . (2.14)

Since the Fourier coefficients Ak,λ are generally complex values, we introduce two real variables,

Qk,λ and Pk,λ, corresponding to the generalised coordinate and conjugate momenta, and with the

Fourier coefficients written as

Ak,λ =
1√

4ε0V

(
Qk,λ + iω−1

k Pk,λ

)
, (2.15)

the Hamiltonian for the electromagnetic field now resembles an infinite set of harmonic oscillators:

H =
∑
k,λ

1

2

(
ωkQ

2
k,λ + P 2

k,λ

)
. (2.16)

We make the final step of quantisation by converting the generalised coordinates and conjugate

momenta into quantum mechanical operators,

Qk,λ −→ q̂k,λ, Pk,λ −→ p̂k,λ, (2.17)

with the canonical commutation relation

[q̂k,λ, p̂k′,λ′ ] = i~δk,k′δλ,λ′ . (2.18)

We then introduce the annihilation and creation operators

âk,λ =
1√

2~ωk
(ωkq̂k,λ + ip̂k,λ) , (2.19a)
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â†k,λ =
1√

2~ωk
(ωkq̂k,λ − ip̂k,λ) , (2.19b)

which, from Eq. (2.18), obey the boson commutation relations

[âk,λ, âk′,λ′ ] = [â†k,λ, â
†
k′,λ′ ] = 0, (2.20a)

[âk,λ, â
†
k′,λ′ ] = δk,k′δλ,λ′ . (2.20b)

Thus the Hamiltonian for the quantised electromagnetic field is finally cast in the form

Ĥ =
∑
k,λ

~ωk

(
â†k,λâk,λ +

1

2

)
. (2.21)

We can now solve the Heisenberg equation of motion for the annihilation operator,

d

dt
âk,λ =

1

i~
[âk,λ, Ĥ] = −iωkâk,λ, (2.22)

with solution

âk,λ(t) = e−iωktâk,λ(0), (2.23)

to write the electric and magnetic fields as operators:

Ê(r, t) = i
∑
k,λ

√
~ωk

2ε0V

[
êk,λâk,λ(t)eik·r −H.c.

]
, (2.24a)

B̂(r, t) = i
∑
k,λ

√
~

2ε0ωkV

[
(k × êk,λ) âk,λ(t)eik·r −H.c.

]
. (2.24b)

2.1.3 Field mode states

Drawing on the quantum treatment of the harmonic oscillator (Ref. [23], ch. 2), we introduce

the number operator n̂k = â†kâk, with eigenvalue equation

n̂k |nk〉 = nk |nk〉 , (2.25)

where {|nk〉} is a complete, ∑
nk

|nk〉 〈nk| = 1, (2.26)

and orthogonal,

〈mk|nk〉 = δmn, (2.27)
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set of states, known as the Fock states, with mk, nk ∈ N0 (Ref. [24], ch. 1). Considering only a

single mode of the quantised field, the Hamiltonian Eq. (2.21) has discrete eigenvalues

Ĥ |nk〉 = ~ωk

(
nk +

1

2

)
|nk〉 = En |nk〉 . (2.28)

The state â†k |nk〉 is also an eigenstate of the Hamiltonian, with an eigenvalue equation

Ĥâ†k |nk〉 = (En + ~ωk) â†k |nk〉 , (2.29)

where we have made use of the commutation relation Eq. (2.20b). In a similar way, we find that

âk |nk〉 is an eigenstate of Ĥ with the eigenvalue equation

Ĥâk |nk〉 = (En − ~ωk) âk |nk〉 . (2.30)

From these two eigenvalues we can see that the annihilation and creation operators have the actions

âk |nk〉 = β1 |nk − 1〉 , (2.31a)

â†k |nk〉 = β2 |nk + 1〉 , (2.31b)

where β1 and β2 are normalisation constants. To find these constants we use Eq. (2.25) to find

nk 〈nk|nk〉 = 〈nk|â†kâk|nk〉 = β∗1β1 〈nk − 1|nk − 1〉 ⇒ |β1|2 = nk, (2.32)

and

(nk + 1) 〈nk|nk〉 = 〈nk|âkâ†k|nk〉 = β∗2β2 〈nk + 1|nk + 1〉 ⇒ |β2|2 = nk + 1. (2.33)

We see that âk and â†k are raising and lowering operators for the ladder of harmonic oscillator

eigenstates:

âk |nk〉 =
√
nk |nk − 1〉 , (2.34a)

â†k |nk〉 =
√
nk + 1 |nk + 1〉 . (2.34b)

It is often useful to decompose the electric field operator positive and negative frequency contribu-

tions:

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t), (2.35)

with

Ê(+)(r, t) = i
∑
k,λ

√
~ωk

2ε0V
êk,λâk,λ(t)eik·r, (2.36a)

Ê(−)(r, t) =
(
Ê(+)(r, t)

)†
. (2.36b)
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2.1.4 Coherent States

Fock states form a useful basis for fields with small photon numbers but are not so suitable

for high photon numbers such as can be found in a laser field. A state that is better suited to

describing such fields is the coherent state [25]. Typically denoted by |α〉, the coherent state is an

eigenstate of the annihilation operator

âk |α〉 = α |α〉 , (2.37)

and has the expansion in Fock states,

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (2.38)

Coherent states are not orthogonal, with overlap

〈β|α〉 = e−|α−β|
2
, (2.39)

but they are complete, in fact overcomplete,

1

π

∫
d2α |α〉 〈α| = 1. (2.40)

2.2 Atom-Field Hamiltonian

The artificial atom used in the experiment by Gasparinetti et al. models a driven three-level

ladder-type system [13] with ground state |g〉, excited state |f〉 and an intermediate state |e〉,
and respective eigenfrequencies ωg, ωf , and ωe, ωg < ωe < ωf . The two transitions of the atom,

|e〉 ↔ |g〉 and |f〉 ↔ |e〉, are driven by a coherent laser at frequency ωd. The direct transition from

the ground state |g〉 to the excited state |f〉 is dipole forbidden.

In this section we will derive a mathematical model describing this system and its coupling to

the electromagnetic field by making two important approximations: the dipole and rotating wave

approximations.

2.2.1 Atom-field interaction: Dipole approximation

The Hamiltonian of an atom interacting with the transverse electromagnetic field is given by

Ĥ = ĤF + ĤA + ĤI , (2.41)

where the Hamiltonian describing the field, ĤF , is given by Eq. (2.21) with the ground state energy

set to zero,

ĤF =
∑
k,λ

~ωkâ
†
k,λâk,λ, (2.42)
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and letting {|l〉}, l = 1, 2, . . . , N be a complete set of orthonormal eigenstates of an N -level atom

with the corresponding eigenfrequencies {ωi}, the free-atom Hamiltonian is

ĤA =

N∑
l

~ωi |l〉 〈l| . (2.43)

The interaction, ĤI , consists of many multipolar expansion terms. Comparing the magnitudes

of these terms we find that the electric-dipole interaction is many orders of magnitude larger.

We therefore make the dipole approximation and neglect the other terms, which leads us to the

interaction

ĤI = −D̂ · Ê (r0) , (2.44)

with Ê given by Eq. (2.24a) and the dipole operator D̂ by

D̂ =
N∑

l,m=1

|l〉 〈l| e (r̂ − r0) |m〉 〈m|

=

N∑
l,m=1

dlm |l〉 〈m| , (2.45)

with e the charge of an electron, r̂ the electron position operator, r0 the nuclear position, and

dipole matrix element

dlm = 〈l|e (r̂ − r0) |m〉 . (2.46)

We then assume that the wavelength of the field is large compared with the size of the atom so

that, over the dimensions of the atom, the field is constant. We expand the spatial dependence of

the electric field as

eik·r̂ = eik·r0eik·(r̂−r0) = eik·r0
[
1 + ik · (r̂ − r0) +O

(
|k · (r̂ − r0) |2

)]
, (2.47)

and retain only the first term. Thus the complete Hamiltonian for an N -level atom interacting

with the electromagnetic field in the dipole approximation is

Ĥ =
∑
k,λ

~ωkâ
†
k,λâk,λ +

N∑
l=1

~ωl |l〉 〈l|+
N∑

l,m=1

∑
k,λ

~ |l〉 〈m|
[
glmk,λâk,λ +

(
glmk,λ

)∗
â†k,λ

]
, (2.48)

with

glmk,λ = −i
√

ωk

2~ε0V
(dlm · êk,λ) eik·r0 . (2.49)

For the three-level system of interest

ĤA = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f | , (2.50)
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and

ĤI =
∑
k,λ

~ |g〉 〈e|
[
ggek,λâk,λ +

(
ggek,λ

)∗
â†k,λ

]
+ ~ |e〉 〈g|

[
gegk,λâk,λ +

(
gegk,λ

)∗
â†k,λ

]
+ ~ |e〉 〈f |

[
gefkλâk,λ +

(
gefkλ

)∗
â†k,λ

]
+ ~ |f〉 〈e|

[
gfekλâk,λ +

(
gfekλ

)∗
â†k,λ

]
.

(2.51)

2.2.2 Rotating-wave approximation

We aim to transform this Hamiltonian into an interaction picture so that we are able to drop

any rapidly oscillating terms. We thus make the rotating wave approximation by introducing the

unitary evolution operator

Û(t) = e−
i
~ Ĥ0t = e−

i
~(ĤF+ĤA)t = e−iωktâ

†
k,λâk,λe−iωgt|g〉〈g|e−iωet|e〉〈e|e−iωf t|f〉〈f |, (2.52)

with ĤF defined by Eq. (2.42) and ĤA by Eq. (2.50). An operator Â in this interaction picture

is defined by the transformation ˆ̃A(t) = Û †(t)Â(0)Û(t). We therefore use the Baker-Campbell-

Hausdorff Lemma [26],

eλÂB̂e−λÂ = B̂ + λ[Â, B̂] +
λ2

2!
[Â, [Â, B̂]] + · · · , (2.53)

to find the explicit time dependence of the operators in the interaction terms. For the Hamiltonian

Eq. (2.51) we find

Û †(t)âk,λÛ(t) = e−iωktâk,λ, (2.54a)

Û †(t)â†k,λÛ(t) = eiωktâ†k,λ, (2.54b)

Û †(t) |g〉 〈e| Û(t) = e−iωegt |g〉 〈e| , (2.54c)

Û †(t) |e〉 〈g| Û(t) = eiωegt |e〉 〈g| , (2.54d)

Û †(t) |e〉 〈f | Û(t) = e−iωfet |e〉 〈f | , (2.54e)

Û †(t) |f〉 〈e| Û(t) = eiωfet |f〉 〈e| , (2.54f)

where ωij = ωi − ωj . The Hamiltonian in this interaction picture is now

H̃I =
∑
k,λ

~ |g〉 〈e|
[
ggek,λâk,λe

−i$Cegt +
(
ggek
)∗
â†ke

i$Regt
]

+ H.c.

+~ |e〉 〈f |
[
gefk,λâk,λe

−i$Cfet +
(
gefk,λ

)∗
â†k,λe

i$Rfet
]

+ H.c

(2.55)

with the rotating and counter-rotating frequencies

$R
ij = ωk − ωij , (2.56a)

$C
ij = ωk + ωij . (2.56b)



2.2 Atom-Field Hamiltonian 13

Over the shortest time scale of the evolution of the system, the rapidly oscillating terms, those

with frequencies $C
ij , will average to zero. The rotating wave approximation consists in neglecting

these counter-rotating terms and leaving only the slower terms with frequencies $R
ij . Then after

transforming back into the Schrödinger picture, we obtain the interaction

ĤI =
∑
k,λ

~
(
gk,λâ

†
k,λ |g〉 〈e|+ g∗k,λâk,λ |e〉 〈g|

)
+ ~

(
ξgk,λâ

†
k,λ |e〉 〈f |+ (ξgk,λ)∗ âk,λ |f〉 〈e|

)
, (2.57)

with

gk,λ = i

√
ωk

2~ε0V
(
deg · ê∗k,λ

)
e−ik·r0 , (2.58)

and the dipole moment ratio

ξ ≡
dfe · ê∗k,λ
deg · ê∗k,λ

. (2.59)

Finally, the complete Hamiltonian for a three-level ladder-type atom interacting with the radiation

field in the dipole and rotating-wave approximations is

Ĥ =
∑
k,λ

~ωkâ
†
k,λâk,λ + ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f |

+
∑
k,λ

~gk,λâ†k,λ |g〉 〈e|+ ~ξgk,λâ†k,λ |e〉 〈f |+ H.c..
(2.60)

2.2.3 Coherent driving

We are interested in investigating the resonance fluorescence of an atom when driven on the

two-photon transition. We therefore assume the atom is powered by a coherent driving laser of

frequency ωd. This can be accounted for by taking all but one mode of the field to be in the vacuum

state, and a single mode, kd, with a single polarisation, in a highly populated coherent state |β〉,
as defined by Eq. (2.38). We then replace the âk and â†k operators in Eq. (2.60) with complex

numbers after transforming into an interaction picture (Ref. [27], p. 139):

âkd −→ βe−iωdt, (2.61a)

â†kd −→ β∗eiωdt. (2.61b)

We now have the time-dependent Hamiltonian

Ĥ = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f |+ ~
Ω

2

(
|g〉 〈e| eiωdt + |e〉 〈g| e−iωdt

)
+ ~ξ

Ω

2

(
|e〉 〈f | eiωdt + |f〉 〈e| e−iωdt

)
,

(2.62)

with
Ω

2
≡ gkd,λβ. (2.63)
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Although the driving strength gkd,λβ is generally complex, we may adopt a phase convention such

that Ω is a real parameter.
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3 Quantum Open Systems

In the previous chapter we dealt with the interaction of an atom with the quantised electromag-

netic field inside a ”closed” system – that is, a system which does not experience energy gain or

loss. Closed systems also have time-reversible evolutions governed only by the Hamiltonian. These

two properties are not physically realisable in an experimental setting as the system will have some

form of energy loss. We are interested in a driven system where energy is being pumped in and lost

via spontaneous emission. This type of dissipative evolution can be modelled by a master equation.

The atom will eventually reach a steady state, where the energy pumped in is balanced by the loss.

In this chapter we set out the formulation of a general master equation by considering an infinite

number of degrees of freedom. We will use this approach to derive a master equation for the three-

level system interacting with the vacuum electromagnetic field we are interested in, but by first

omitting the driving field, only to reintroduce it after we have accounted for the loss mechanism.

Using the master equation, we will then discuss how to recover the optical spectrum and photon-

photon correlations of the atom using quantum regression. Finaly, we will consider a different

approach to open quantum systems – quantum trajectory theory.

3.1 Lindblad Master Equation

We consider a system S coupled to an environment reservoir R through an interaction between

S and R. We aim to derive an equation of motion that gives information about the evolution of

the system with minimal dependence on the composite system S ⊗ R. While we will start with

a generic formulation for any system-reservoir coupling, we will ultimately consider the system to

be the three-level atom, Eq. (2.50), the reservoir to be the electromagnetic field, Eq. (2.42), and

the interaction between the two to be the dipole interaction in the rotating-wave approximation,

Eq. (2.57).

Following the method of Carmichael (Ref. [28], ch. 1), we give only a general formulation of

the derivation.

3.1.1 System plus reservoir approach

We begin with the general Hamiltonian

Ĥ = ĤS + ĤR + ĤSR, (3.1)

where ĤS , ĤR and ĤSR are Hamiltonians describing the system, the reservoir and the coupling

between them, respectively. We introduce the density operator for the composite S ⊗ R system,
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χ̂(t), and then define the reduced density operator, ρ̂(t), by taking the trace over the reservoir

states:

ρ̂(t) ≡ trR [χ̂(t)] . (3.2)

We can calculate the average of an operator of S, Â, in the Schrödinger picture even if we only

have knowledge of ρ̂(t):

〈Â(t)〉 = trS⊗R

[
Âχ̂(t)

]
= trS{ÂtrR [χ̂(t)]} = trS

[
Âρ̂(t)

]
. (3.3)

The time evolution of the density operator in the Schrödinger picture is given by

d

dt
χ̂ =

1

i~
[Ĥ, χ̂], (3.4)

where Ĥ is the total Hamiltonian, Eq. (3.1). We transform the density operator into an interaction

picture with the unitary evolution operator,

Û(t) = e−
i
~(ĤS+ĤR)t, (3.5)

by defining

ˆ̃χ(t) = Û †(t)χ̂(0)Û(t). (3.6)

Transforming Eq. (3.4) into the interaction picture, we then obtain

d

dt
ˆ̃χ = − 1

i~
ˆ̃χ
(
ĤS + ĤR

)
+

1

i~

(
ĤS + ĤR

)
ˆ̃χ+ Û †(t)

d

dt
χ̂Û(t)

=
1

i~
[ ˆ̃HSR, ˆ̃χ], (3.7)

where ĤSR is given the time dependent form

ˆ̃HSR(t) = Û †(t)ĤSRÛ(t). (3.8)

Finally, we formally integrate Eq. (3.7) and substitute into the commutator (3.4):

d

dt
ˆ̃χ =

1

i~
[ ˆ̃HSR, ˆ̃χ(0)]− 1

~2

∫ t

0
dt′[ ˆ̃HSR(t), [ ˆ̃HSR(t′), ˆ̃χ(t′)]]. (3.9)

3.1.2 Born and Markov approximations

We assume that at time t = 0, when the interaction is turned on, there are no correlations

between S and R. The density operator can then be factorised as

ˆ̃χ(0) = χ̂(0) = ρ̂(0)R̂0, (3.10)
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where R̂0 is the initial density operator for the reservoir. We now take the trace of Eq. (3.9) over

the reservoir states to obtain the master equation

d

dt
ˆ̃ρ = − 1

~2

∫ t

0
dt′trR

{
[ ˆ̃HSR(t), [ ˆ̃HSR(t′), ˆ̃χ(t′)]]

}
, (3.11)

where we have assumed

trR

[
ˆ̃HSR(t)R̂0

]
= 0 (3.12)

and neglected the first commutator term in Eq. (3.9). As the coupling between S and R is very

weak we assume that the density operator can be factorised at all times. Thus we expand the

density operator in powers of the coupling interaction,

ˆ̃χ(t) = ˆ̃ρ(t)R̂0 +O(ĤSR), (3.13)

and make the Born approximation by neglecting terms higher than second-order in ĤSR,

d

dt
ˆ̃ρ = − 1

~2

∫ t

0
dt′trR

{
[ ˆ̃HSR(t), [ ˆ̃HSR(t′), ˆ̃ρ(t′)R̂0]]

}
. (3.14)

Our equation of motion for the state ˆ̃ρ(t) now depends on the initial state of the reservoir. It

also depends on the past behaviour of the system through the integration over ˆ̃ρ(t′) in Eq. (3.14).

We may nonetheless make the Markov approximation based on the assumption that the reservoir

is much larger than the system; changes in R from its interaction with S are negligible. More

specifically, there exist two very different time scales: a slow time scale for the evolution of S, and

a rapid time scale of the decaying reservoir correlations. We then replace ˆ̃ρ(t′) with ˆ̃ρ(t) to obtain

the master equation in the Born-Markov approximation:

d

dt
ˆ̃ρ = − 1

~2

∫ t

0
dt′trR

{
[ ˆ̃HSR(t), [ ˆ̃HSR(t′), ˆ̃ρ(t)R̂0]]

}
. (3.15)

3.1.3 Three-level atom

We know from section 2.2.1 that the atom has two dipole transitions, |f〉 ↔ |e〉 and |e〉 ↔
|g〉, with respective raising (lowering) operators σ̂+

fe (σ̂−fe) = |f〉 〈e|
(
|e〉 〈f |

)
and σ̂+

eg (σ̂−eg) =

|e〉 〈g|
(
|g〉 〈e|

)
. These two dipole transitions couple to every mode in the electromagnetic field

(reservoir). We then introduce the combined lowering operator

Σ̂ ≡ σ̂−eg + ξσ̂−fe, (3.16)

and returning to our specific interest in a three-level atom coupled to the electromagnetic field, we

now adopt a more explicit model for the composite system, with Hamiltonians

ĤS = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f | , (3.17a)
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ĤR =
∑
k,λ

~ωkr̂
†
k,λr̂k,λ, (3.17b)

ĤSR =
∑
k,λ

~
(
g∗k,λΣ̂r̂†k,λ + gk,λΣ̂†r̂k,λ

)
= ~

(
Σ̂Γ̂† + Σ̂†Γ̂

)
, (3.17c)

where ĤS is the free Hamiltonian of the atom, from Eq. (2.62), with the driving field turned off, and

the reservoir Hamiltonian is described by a collection of harmonic oscillators with frequencies ωk,

creation and annihilation operators r̂†k,λ and r̂k,λ, wavevectors k and polarisation λ. The interaction

term, ĤSR, contains a product of reservoir operators and atomic operators with a coupling constant

gk,λ as defined by Eq. (2.58), and we have defined

Γ̂† ≡
∑
k,λ

g∗k,λr̂
†
k,λ (3.18a)

Γ̂ ≡
∑
k,λ

gk,λr̂k,λ. (3.18b)

We set the reservoir to be in thermal equilibrium at a temperature T , with the initial density

operator

R̂0 =
∏
j

e−~ωkr̂
†
k,λr̂k,λ/kBT

(
1− e−~ωk/kBT

)
, (3.19)

where kB is Boltzmann’s constant. The explicit form of the master equation in the Born-Markov

approximation is then

d

dt
ˆ̃ρ(t) = −

∫ t

0
dt′
{[

ˆ̃Σ(t) ˆ̃Σ(t′)ˆ̃ρ(t)− ˆ̃Σ(t′)ˆ̃ρ(t) ˆ̃Σ(t)
]
〈ˆ̃Γ(t)ˆ̃Γ(t′)〉R + H.c.

+
[

ˆ̃Σ†(t) ˆ̃Σ†(t′)ˆ̃ρ(t)− ˆ̃Σ†(t′)ˆ̃ρ(t) ˆ̃Σ†(t)
]
〈ˆ̃Γ†(t)ˆ̃Γ†(t′)〉R + H.c.

+
[

ˆ̃Σ(t) ˆ̃Σ†(t′)ˆ̃ρ(t)− ˆ̃Σ†(t′)ˆ̃ρ(t) ˆ̃Σ(t)
]
〈ˆ̃Γ(t)ˆ̃Γ†(t′)〉R + H.c.

+
[

ˆ̃Σ†(t) ˆ̃Σ(t′)ˆ̃ρ(t)− ˆ̃Σ(t′)ˆ̃ρ(t) ˆ̃Σ†(t)
]
〈ˆ̃Γ†(t)ˆ̃Γ(t′)〉R + H.c.

}
,

(3.20)

where the system and reservoir operators in the interaction picture are

ˆ̃Σ(t) = Û †(t)Σ̂(0)Û(t) = e−iωegt |g〉 〈e|+ e−iωfetξ |e〉 〈f | , (3.21a)

ˆ̃Σ†(t) = Û †(t)Σ̂†(0)Û(t) = eiωegt |e〉 〈g|+ eiωef tξ |f〉 〈e| , (3.21b)

ˆ̃Γ(t) = Û †(t)Γ̂(0)Û(t) =
∑
k,λ

gk,λr̂k,λe
−iωkt, (3.21c)

ˆ̃Γ†(t) = Û †(t)Γ̂†(0)Û(t) =
∑
k,λ

g∗k,λr̂
†
k,λe

iωkt, (3.21d)
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and the explicit reservoir correlation functions, 〈ÂB̂ 〉R = trR

[
R̂0ÂB̂

]
, are

〈ˆ̃Γ(t)ˆ̃Γ(t′)〉 =
∑
k,k′

∑
λ,λ′

gk,λgk′,λ′e
−iωkte−iωk′ t

′
trR

[
R̂0r̂k,λr̂k′,λ′

]
= 0, (3.22a)

〈ˆ̃Γ†(t)ˆ̃Γ†(t′)〉 =
∑
k,k′

∑
λ,λ′

g∗k,λg
∗
k′,λ′e

iωkteiωk′ t
′
trR

[
R̂0r̂

†
k,λr̂

†
k′,λ′

]
= 0 (3.22b)

〈ˆ̃Γ(t)ˆ̃Γ†(t′)〉 =
∑
k,λ

|gk,λ|2e−iωk(t−t′)
[
R̂0r̂k,λr̂

†
k′,λ′

]
,

=
∑
k,λ

|gk,λ|2e−iωk(t−t′) [n̄(ωk, T ) + 1] , (3.22c)

〈ˆ̃Γ†(t)ˆ̃Γ(t′)〉 =
∑
k,λ

|gk,λ|2eiωk(t−t′)trR

[
R̂0r̂

†
k,λr̂k,λ

]
=
∑
k,λ

|gk,λ|2eiωk(t−t′)n̄(ωk, T ), (3.22d)

where

n̄(ωk, T ) =
e−~ωk/kBT

1− e−~ωk/kBT
(3.23)

is the mean thermal photon number at temperature T of reservoir modes of frequency ωk. If we

change the summation over modes to an integral by introducing the density of states %(k) and

making use of the dispersion relation, ωk = kc, the master equation becomes

d

dt
ˆ̃ρ = −

∫ t

0
dt′

{[
ˆ̃Σ(t) ˆ̃Σ†(t′)ˆ̃ρ− ˆ̃Σ†(t′)ˆ̃ρ ˆ̃Σ(t)

]
〈ˆ̃Γ†(t)ˆ̃Γ(t′)〉R + H.c.

+
[

ˆ̃Σ†(t) ˆ̃Σ(t′)ˆ̃ρ− ˆ̃Σ(t′)ˆ̃ρ ˆ̃Σ†(t)
]
〈ˆ̃Γ(t)ˆ̃Γ†(t′)〉R + H.c.

}
,

(3.24)

with the reservoir correlation functions

〈ˆ̃Γ†(t)ˆ̃Γ(t′)〉R =
∑
λ

∫
d3keiωk(t−t′)%(k)|g(k, λ)|2n̄(k, T ), (3.25a)

〈ˆ̃Γ(t)ˆ̃Γ†(t′)〉R =
∑
λ

∫
d3ke−iωk(t−t′)%(k)|g(k, λ)|2 [n̄(k, T ) + 1] . (3.25b)

The decay operator ˆ̃Σ(t) in the interaction picture is the sum of two separate operators which

oscillate at different frequencies. Equation (3.24) then involves sixteen terms as well as their

Hermitian conjugates. To simplify this problem we will assume the reservoir is in a vacuum state

and set n̄(ω, T )→ 0, thereby retaining only the second term of Eq. (3.24). This still leaves us with

eight terms plus Hermitian conjugates with different combinations of frequency dependence. We



20 3 . Quantum Open Systems

may nevertheless assume that over the range of fluorescence frequencies of the atom the density

of states, %(k), and the field-atom coupling, g(k, λ), are constant. We evaluate these functions

at the average resonance frequency – the two-photon transition frequency ω = ωfg/2 - and adopt

spherical coordinates in k-space to write the density states as

%kd3k =
(ωfg/2)2 V

8π3c3
dωdΩ. (3.26)

Substituting the coupling constant, Eq. (2.58), the correlation function, Eq. (3.25b), becomes

〈ˆ̃Γ(t)ˆ̃Γ†(t′)〉R = π
∑
λ

(ωfg/2)3

16~π3c3ε0

∫
dΩ (deg · êk,λ)2 δ

(
t− t′

)
. (3.27)

We may now evaluate the time integral in Eq. (3.24) to obtain the master equation in the interaction

picture
d

dt
ˆ̃ρ =

γ

2

(
2ˆ̃Σ(t)ˆ̃ρ ˆ̃Σ†(t)− ˆ̃Σ†(t) ˆ̃Σ(t)ˆ̃ρ− ˆ̃ρ ˆ̃Σ†(t) ˆ̃Σ(t)

)
, (3.28)

with decay rate

γ ≡ 2π
∑
λ

(ωfg/2)3

16~π3c3ε0

∫
dΩ (deg · êk,λ)2 . (3.29)

Although a master equation like Eq. (3.28) would generally also contain dispersive (frequency shift)

terms, these have been eliminated at the level of the approximations used. We choose to neglect

these terms, as we aim only for a phenomenological treatment of damping in an artificial atom

(transmon), rather than a first-principles treatment of a model system. After transforming back

into the Schrödinger picture, we thus obtain the Lindblad master equation for a three-level atom

with spontaneous emission:

d

dt
ρ̂ =

1

i~
[ĤS , ρ̂] +

γ

2

(
2Σ̂ρ̂Σ̂† − Σ̂†Σ̂ρ̂− ρ̂Σ̂†Σ̂

)
. (3.30)

Finally, we make the extension to an atom driven by a coherent laser, to which end we replace the

system Hamiltonian, Eq. (3.17a), by

ĤS = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e|+ ~ωf |f〉 〈f |+ ~
Ω

2

(
|g〉 〈e| eiωdt + |e〉 〈g| e−iωdt

)
+ ~ξ

Ω

2

(
|e〉 〈f | eiωdt + |f〉 〈e| e−iωdt

)
.

(3.31)

3.2 Two-Time Correlation Functions

The focus of this thesis is on the fluorescence emitted from a three-level atom and the photon-

photon correlations of this fluorescence. The optical spectrum of a stationary field Ê(t) can be
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calculated by taking the Fourier transform of the first-order correlation function (Ref. [23], Sect. 3.3)

G(1)(τ) = lim
t→∞
〈Ê(−)(t)Ê(+)(t+ τ)〉. (3.32)

This first order correlation quantifies the coherence of two electric fields. Experiments such as

Young’s double slit experiment were very important in determining the duality of light by showing

such interference patterns. On the other hand, the second order correlation,

G(2)(τ) = lim
t→∞
〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉, (3.33)

provides information on the likelihood of detecting a second photon at a time delay τ after a

first photon detection. Hanbury Brown and Twiss performed an important experiment showing

bunching of such delayed photon coincidences [6]. There will be a more detailed discussion of the

two orders of coherence in the following chapters.

The master equation we have developed allows us to solve for the density operator of a system

interacting with a reservoir as a function of time. It also allows us to solve for one-time averages

of an operator Â computed by the standard formula

〈Â(t)〉 = tr[Âρ̂(t)]. (3.34)

What it cannot directly provide are two-time or multi-time averages. Resonance fluorescence and

photon correlations – which are our interest – rely on computing two-time operator averages. We

now discuss how the master equation can be used to compute these averages.

3.2.1 Quantum Regression

We start by considering the Lindblad master equation, Eq. (3.30), recast in the form

d

dt
ρ̂ = Lρ̂, (3.35)

with Liouvillian superoperator

L• =
1

i~
[Ĥ, •] +

γ

2

(
2Σ̂ • Σ̂† − Σ̂†Σ̂ • − • Σ̂†Σ̂

)
. (3.36)

For two operators, Â and B̂, which both satisfy the Heisenberg equations of motion, the two-time

average is

〈Â(t)B̂(t+ τ)〉 = trS⊗R

[
χ̂(0)Â(t)B̂(t+ τ)

]
, (3.37)

where we consider the case τ ≥ 0. If we then solve the Heisenberg equations of motion formally,

writing

Â(t) = Û †(t)Â(0)Û(t) (3.38)
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and

B̂(t+ τ) = Û †(t+ τ)B̂(0)Û(t+ τ) (3.39)

with Û(t) the time evolution operator, we may use the cyclic property of the trace and the Born-

Markoff approximation (see Ref. [28], Sect. 1.5.1) to obtain

〈Â(t)B̂(t+ τ)〉 = trS

[
B̂(0)eLτ

(
ρ̂(t)Â(0)

)]
. (3.40)

Following a similar procedure, we can also calculate the correlation function of three operators from

the quantum regression formula

〈Â(t)B̂(t+ τ)Ĉ(t)〉 = trS

[
B̂(0)eLτ

(
Ĉ(0)ρ̂(t)Â(0)

)]
. (3.41)

3.3 Quantum Trajectory Theory

When we derived the master we traced over the reservoir, causing us to lose information about

the entanglement between the system and the reservoir. We can recover some of this information

by disentangling the system from the reservoir, rather than tracing over the reservoir. We are

able to do this by considering a situation where an ideal detector is placed in the reservoir which

detects photons lost from the system. When considering the master equation, the Markov and Born

approximation protects the system evolution from being affected by the presence of the detector;

however, by disentangling, there will be some effect due to measurement backaction on the future

evolution of the system state. In order to uncover this more detailed view of the dynamics, we aim to

“unravel” the density operator into a collection of possible measurement records – or “trajectories”

[29].

3.3.1 Unravelling the density operator

Following the treatment of Carmichael (Ref. [30], ch. 17), we separate the Liouvillian superop-

erator, Eq. (3.36), into two parts, writing L = (L − S) + S, with interaction term

S ≡ γΣ̂ • Σ̂†, (3.42)

such that

L − S =
1

i~
[Ĥ, •]− γ

2

(
Σ̂†Σ̂ •+ • Σ̂†Σ̂

)
=

1

i~

(
Ĥ ′ • − • Ĥ ′†

)
, (3.43)

which governs the free evolution of the system, with the non-Hermitian Hamiltonian

Ĥ ′ = Ĥ − i~γ
2

Σ̂†Σ̂. (3.44)
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Transforming into an effective “interaction picture”, Eq. (3.35) becomes

d

dt
ˆ̃ρ = e−(L−S)tSe(L−S)t ˆ̃ρ, (3.45)

with

ˆ̃ρ = e−(L−S)tρ̂(t). (3.46)

This differential equation has the formal solution

ˆ̃ρ(t) = ρ̂(0) +

∫ t

0
dt′e−(L−S)t′Se(L−S)t′ ρ̂(0). (3.47)

We may then proceed with a Dyson expansion to obtain

ρ̂(t) =

∞∑
n=0

{∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1e

(L−S)(t−tn)Se(L−S)(tn−tn−1)S · · · Se(L−S)t1 ρ̂(0)

}
, (3.48)

where we have reversed the transformation, Eq. (3.46). We now rewrite the density operator as

ρ̂(t) =
∞∑
n=0

∫ t

0
dtn

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1PREC(t) |ψREC(t)〉 〈ψREC(t)| , (3.49)

with normalised conditional state

|ψREC(t)〉 =
|ψ̃REC(t)〉√

〈ψ̃REC(t)|ψ̃REC(t)〉
, (3.50)

conditional probability

PREC(t) = 〈ψ̃REC(t)|ψ̃REC(t)〉 , (3.51)

and unnormalised state

|ψ̃REC(t)〉 = e−
i
~ Ĥ
′(t−tn)Ĵγe

− i
~ Ĥ
′(tn−tn−1)Ĵγ · · · Ĵγe−

i
~ Ĥ
′t1 |ψ(0)〉 , (3.52)

where we have introduced the jump operator

Ĵγ =
√
γ Σ̂. (3.53)

The photon detector will produce a record of detection times, t1, t2, . . . , tn, which we refer to

with the REC label. The Dyson expansion in Eq. (3.48) then refers to the sum over all possible

numbers of photon detections recorded in an experiment, while the integral covers all possible times

in the interval [0, t] at which the detections occur. The state, |ψ̃REC(t)〉, is governed by the non-

Hermitian evolution Hamiltonian, Ĥ ′, with intermittent jumps, Ĵ , acting on an initial pure state
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|ψ(0)〉. The probability for a particular path leading to state |ψ̃REC(t)〉 is given by

PREC(t)dt1dt2 · · · dtn = 〈ψ̃REC(t)|ψ̃REC(t)〉 dt1dt2 · · · dtn. (3.54)

3.3.2 Monte Carlo simulations

We are able to compute stochastic realisations of the states, |ψ̃(t)〉, of a quantum trajectory by

using a Monte Carlo algorithm. We consider the time interval of the trajectory, [0, t], to be broken

into discrete steps of size dt. At each time step the trajectory has two possible paths it might take:

free evolution governed by the non-Hermitian Hamiltonian Ĥ ′, or a jump executed by the operator

Ĵ :

|ψ̃REC(t+ dt)〉 =


either e−

i
~ Ĥdt |ψ̃REC(t)〉

or Ĵγ |ψ̃REC(t)〉 .
(3.55)

The decision to evolve freely or jump is made by comparing the conditional probabilities for either

of the two events for a given photon detection record. Using Bayesian inference, the conditional

probability to evolve freely in interval (t, t+ dt], given the detection record up to time t, is

Prob(free evolution) =
Prob

(
e−

i
~ Ĥdt |ψ̃REC(t)〉

)
PREC(t)

= 〈ψREC(t)|e− i
~(Ĥ′†−Ĥ′)dt|ψREC(t)〉

= 〈ψREC(t)|e−γΣ̂†Σ̂dt|ψREC(t)〉 , (3.56)

and the conditional probability for a jump to occur is

Prob(jump) =
Prob

(
Ĵγ |ψ̃REC(t)〉

)
PREC(t)

dt

= 〈ψREC(t)|Ĵ†γ Ĵγ |ψREC(t)〉dt
= γ 〈ψREC(t)|Σ̂†Σ̂|ψREC(t)〉dt, (3.57)

where we note that the PREC(t) in the denominator converts unnormalised bras and kets into

normalized bras and kets. We choose dt to be sufficiently small that in each time step only a single

action occurs. Physically this means that the photon detector we have set up will only register at

most one photon detection in the interval (t, t+ dt]. We now see that the probabilities add to unity

as

Prob(free evolution) ≈ 〈ψREC(t)|1− γdtΣ̂†Σ̂|ψREC(t)〉
= 1− γdt 〈ψREC(t)|Σ̂†Σ̂|ψREC(t)〉
= 1− Prob(jump). (3.58)
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The probability for a jump to occur is the only information required in order to decide how

the system evolves from one time step to another. Now that we have all the pieces, the trajectory

simulation can be simplified into four steps [31]:

Step 1. Compute the probability for a jump to occur.

Step 2. Generate a random number z ∈ [0, 1).

Step 3. Compare with the probability for a jump to occur:

3.a. If z ≥ Prob(jump) then freely evolve with Ĥ ′ so

|ψ̃(t+ dt)〉 = e−
i
~ Ĥ
′dt |ψ̃REC(t)〉 ; (3.59)

3.b. If z < Prob(jump) then a jump occurs so

|ψ̃(t+ dt)〉 = Ĵγ |ψ̃REC(t)〉 . (3.60)

Step 4. Renormalise the state and go back to Step 1.

An operator expectation in a single trajectory can be computed in the usual way as

〈Â(t)〉REC = 〈ψREC(t)|Â|ψREC(t)〉 , (3.61)

while an ensemble average is given by the sum over N independent quantum trajectories

〈Â(t)〉REC =
1

N

∑
{REC}N

〈ψREC(t)|Â|ψREC(t)〉 , (3.62)

where the {REC}N label refers to an ensemble of N realised trajectory records. Taking the limit

N → ∞ is equivalent to averaging over all possible trajectories, resulting in the same operator

average we would expect from the density operator:

lim
N→∞

〈Â(t)〉REC −→ 〈Â(t)〉 = tr
[
Âρ̂(t)

]
. (3.63)

In a similar fashion, if we compute the time average of a trajectory record for a sufficiently long

time, we will also arrive at the same result given that quantum trajectories are ergodic [32, 33].
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4 Atomic Dynamics

The motivation for this thesis comes from the work of Gasparinetti et al. and their experiments

on a three-level ladder-type artificial atom [12, 13]. Up to this point we have modelled a real atom

interacting with the electromagnetic field in free space, whereas the Gasparinetti experiment was

conducted on a superconducting circuit. In recent times, circuit quantum electrodynamics (QED)

has been a way to achieve experimental results for cavity QED studies.

Here we will give a brief overview of circuit QED, as an analogue and extension of cavity QED,

as well as a review of the experimental set up that forms the basis of this thesis. We will remove

the time dependence from the Hamiltonian Eq. (3.31) by transforming into a frame rotating at

the drive frequency. This allows us to restate the Hamiltonian in simpler terms. Finally, we will

investigate the steady states of the atom in different parameter regimes.

4.1 From Cavity to Circuit QED

Cavity quantum electrodynamics (QED) is the study of an atom interacting with a quantised

electromagnetic field inside a cavity. In the past decade, superconducting circuits have been used to

successfully model the dynamics of a cavity QED setting. This makes circuit QED a very popular

candidate for quantum computing and quantum technology [11, 34].

4.1.1 Circuit QED: A brief review

In place of a real atom, circuit QED experiments “engineer” artificial atoms using supercon-

ducting circuits that utilise the quantum tunnelling of pairs of electrons – Cooper pairs – between

two coupled superconducting plates. This effect, known as the Josephson effect [35, 36], is the main

component in the three main types of qubits: charge qubits [37], flux qubit [38], and phase qubits

[39].

One of the first realised artificial atoms was the Cooper pair box [40, 41], which consists of

an “island” of superconducting material which is coupled to a grounded reservoir via a Josephson

junction [42]. The use of superconducting materials requires the experiments to be performed at

very low temperatures, on the order of mK. At such low temperatures the effect of thermal noise

is also minimised. This is important as these artificial atoms usually “emit” radiation in the range

of 1-30 GHz and, even at 20 mK, the peak blackbody radiation is approximately 1.2 GHz [43].

The experiments this thesis is based on (Refs. [12, 13, 44]) were performed on a transmon

superconducting circuit. A transmon is a Cooper pair box operating in the strong coupling regime –

where the Josephson tunnelling energy is much greater than the charging energy [45, 46]. Transmons

are anharmonic oscillators which have many unequally spaced energy levels, and this makes them
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Figure 4.1: Energy level diagram of the three-level artificial atom: ωge and ωef are single-photon
resonance frequencies, ωfg is the two-photon resonance frequency, δ and α/2 are detunings, Ω and
ξΩ are Rabi frequencies, and ωd is the drive frequency.

good candidates for artificial atoms. The transmon is typically coupled to a coplanar transmission

line which acts like a waveguide in a traditional optical setting. “Cavities” are created by making

a break in the transmission line, where two capacitors act as traditional mirrors. The output of

this circuit is then transmitted to a waveguide. In a cavity QED setting, the atom spontaneously

emits into a random mode in three-dimensional space; however, in the circuit QED setting, with

coupling to a waveguide, the energy is emitted into a single (transverse) spatial mode.

4.1.2 Time independent Hamiltonian

While the experiments this work is based on were conducted on an artificial atom we model our

approach on a real atom where the laser is is replaced by a coherent microwave drive. Although

largely phenomenological, carrying over Lindblad master equations from a fundamental quantum

optics model to circuit QED is a common practice and has been found to work very well, even at

a quantitative level (see, e.g., Refs. [12, 44, 47]). We wish to restate the Hamiltonian Eq. (3.31) in

terms of useful parameters from a circuit QED setting by removing the time dependence. To this

end we may decompose the Hamiltonian in the form

Ĥ = Ĥ ′0 +
(
Ĥ − Ĥ ′0

)
, (4.1)

with

Ĥ ′0 = λg |g〉 〈g|+ λe |e〉 〈e|+ λf |f〉 〈f | , (4.2)
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where λg, λe, λf are parameters. We then transform into a frame rotating at frequency ωd with the

unitary evolution operator

Û(t) = e−
i
~ Ĥ
′
0t, (4.3)

fixing the adjustable parameters so as to accomplish our aim. In the Hamiltonian, Eq. (3.31), we

generate time dependence in the new interaction picture with

Û †
(
eiωdt |g〉 〈e|

)
Û = eiωdte−i(λe−λg)t |g〉 〈e| , (4.4a)

Û †
(
eiωdt |e〉 〈f |

)
Û = eiωdte−i(λf−λe)t |e〉 〈f | . (4.4b)

To remove this time dependence we now choose λg, λe, and λf to satisfy

λe − λg = ωd, (4.5a)

λf − λe = ωd, (4.5b)

and by setting the ground state energy to zero, λg − ωg = 0, we obtain the time-independent

Hamiltonian for a driven three-level ladder-type atom

Ĥ = −~
(α

2
+ δ
)
|e〉 〈e| − 2~δ |f〉 〈f |+ ~

Ω

2

(
|g〉 〈e|+ |e〉 〈g|

)
+ ~ξ

Ω

2

(
|e〉 〈f |+ |f〉 〈e|

)
, (4.6)

where, following Gasparinetti et al. (Refs. [12, 13]), we have defined the anharmonicity of the

|e〉 → |g〉 and |f〉 → |e〉 transitions,

α = ωfe − ωeg, (4.7)

and the drive detuning from two-photon resonance

2δ = 2ωd − ωfg. (4.8)

For this thesis we take the anharmonicity of the transmon to be negative [13]. In fact, to consider

two-photon resonance, the anharmonicity must be very high compared with the linewidth, |α|/γ �
1. If α ≈ 0, the atom would be able to able to transition from |g〉 to |f〉 via |e〉 in two separate

absorption events. We are interested in the case where the atom can only be excited to the |f〉
state by absorbing two photons simultaneously. Figure 4.1 shows how this can happen via a virtual

state and how the different parameters we have defined relate to one another.

4.2 Steady States

In this section we use numerical methods to solve the master equation and survey the effects each

of the parameters in our model have on the steady state of the atom. We then use a simplified model

where we have adiabatically removed the intermediate state, |e〉, to derive analytic expressions for

the steady states. From these expressions we are able to qualitatively clarify the observations we
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Figure 4.2: Steady state populations for |g〉 (blue), |e〉 (orange), and |f〉 (green) plotted against
the two-photon resonance detuning parameter δ. There are peaks at the single-photon (δ/γ = 60.0)
and two-photon (δ/γ = 0.0) resonances. Parameters are (Ω/γ, α/γ, ξ) = (5.0,−120.0, 1.0).

have made from our numerical calculations.

4.2.1 Numerical survey of populations in steady state

For very weak drives, we expect the atom to remain largely in state |g〉. At two-photon reso-

nance, however, there is a peak in the probability to occupy states |e〉 and |f〉, as the atom simulta-

neously absorbs two photons of frequency ωfg/2 to excite |f〉, and then decays to the ground state

via a cascade decay through |e〉. There is also a large peak in the probability to occupy state |e〉 at

the single-photon resonance δ = −α/2, as the drive is resonant with the lower |g〉 ↔ |e〉 transition.

These resonance effects are illustrated in Fig. 4.2.

While this thesis is concerned with the case where |α|/γ � 1, let us for a moment consider

the case where α = 0, as in Fig. 4.3a. Then, if the field driving this harmonic three-level ladder

is resonant with the two-photon transition, δ = 0, it is also resonant with both the |g〉 ↔ |e〉 and

|e〉 ↔ |f〉 transitions. Population is able to move into the state |f〉 by two-photon absorption, as

well as by two single-photon absorptions, first into state |e〉 and then into state |f〉. Due to the

single-photon resonance with the state |e〉, away from δ = 0, the state |e〉 is more populated than

state |f〉.
If we increase the anharmonicity to α/γ = −120, we see, in Fig. 4.3b, that the region of

detuning with significant population in the states |e〉 and |f〉 has narrowed. This becomes more

apparent in Fig. 4.3c, where α/γ = −500. We see that there is an effective two-photon drive for

a |g〉 ↔ |f〉 transition that is inversely proportional to α. For a fixed Ω, as we increase |α|, the

effective two-photon drive becomes weaker. Fig. 4.3, with the exception of the α/γ = −120 case,
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Figure 4.3: Steady state population plotted as a function of detuning from two-photon resonance
for three different values of anharmonicity α. We have set ξ = 1.0.
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Figure 4.4: Steady state populations plotted as a function of detuning from the two-photon
resonance for three different values of the dipole moment ratio ξ. We have set α/γ = −120.0.
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show a symmetry about the two-photon resonance. The symmetry in Fig. 4.3b breaks down as the

effects of the single-photon resonance, at δ = 60, start to appear. This also occurs for α/γ = −500,

but we would have to expand the range of the drive strength and the detuning to see it. Only

for the case of zero anharmonicity is there a complete symmetry due to the single-photon and

double-photon resonances being the same.

One other parameter that plays a significant role in the evolution of the atom is the dipole mo-

ment ratio ξ. This ratio plays two important roles: first, it determines the ratio of Rabi frequencies

(drive strengths) for the |g〉 → |e〉 and |e〉 → |f〉 transitions; and, second, it determines the ratio

of the decay rates from the upper states of these transitions. By increasing this ratio we not only

allow the atom to be excited to the state |f〉 with a stronger drive, but we also increase the rate

at which population decays from |f〉 to |e〉 by a factor of ξ2. We see in Fig. 4.4c that, due to the

increased decay rate, more steady state population accumulates in |e〉 than |f〉 for stronger drives.

The opposite can also be seen in Fig. 4.4a where, for a lower ξ, there is more population in |f〉.
We already know from Fig. 4.3c that, for ξ = 1, the steady state populations of |e〉 and |f〉 are

approximately the same, so we can conclude that they must be proportional to each other with

some dependence on ξ.

The symmetry seen in Fig. 4.3 is lost as we change the dipole moment ratio. For an increasing

ξ, the region of two-photon resonance appears to shift towards negative values of δ, while for a

decreasing ξ, this region shifts towards positive δ. Not only is there an effective two-photon drive,

but there also appears to be an effective two-photon resonance that shifts as the drive strength

increases. While the symmetry for these two parameters is lost, there is one important effect on

the steady state that these two parameters share; it is that the effective two-photon drive appears

to be dependent on both. Not only is it apparent that the effective two-photon drive is inversely

proportional on the anharmonicity, but it also appears to be directly proportional to ξ. As we

increase the dipole moment ratio, the region of two-photon resonance also increases, as we see in

Fig. 4.4.

4.2.2 Simplified model: adiabatic elimination of the intermediate state

We now employ a “secular approximation” of the atom and adiabatically eliminate the inter-

mediate state |e〉 to obtain an effective two-level atom [48, 49]. We begin by solving Schrödinger’s

equation for the Hamiltonian Eq. (4.6), where for the pure state

|ψ(t)〉 = cg(t) |g〉+ ce(t) |e〉+ cf (t) |f〉 , (4.9)

we obtain three coupled differential equations
(
ẋ = d

dtx
)
:

ċg = −iΩ
2
ce(t), (4.10a)

ċe = −iΩ
2
cg(t) + i

(α
2

+ δ
)
ce(t)− iξ

Ω

2
cf (t), (4.10b)
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ċf = −iξΩ

2
ce(t) + 2iδcf (t). (4.10c)

In order to adiabatically eliminate the |e〉 state, we set the time derivative to zero in Eq. (4.10b),

rearrange to solve for ce, and substitute back into the remaining expressions, leaving us with the

pair of coupled equations

ċg = −i
(

Ω

2

)2 1

α/2 + δ
cg(t)− iξ

(
Ω

2

)2 1

α/2 + δ
cf (t), (4.11a)

ċf = −iξ
(

Ω

2

)2 1

α/2 + δ
cg(t)− i

[(
ξΩ

2

)2 1

α/2 + δ
− 2δ

]
cf (t). (4.11b)

From these equations, we construct the effective Hamiltonian

Ĥeff = ~δg |g〉 〈g|+ ~ (−2δ + δf ) |f〉 〈f |+ ~
Ωeff

2

(
|g〉 〈f |+ |f〉 〈g|

)
, (4.12)

with effective two-photon drive
Ωeff

2
= ξ

(
Ω

2

)2 1

α/2 + δ
. (4.13)

and frequency shifts due to the Stark effect [50–52]

δg =

(
Ω

2

)2 1

α/2 + δ
, (4.14a)

δf =

(
ξ

Ω

2

)2 1

α/2 + δ
. (4.14b)

From Eqs. (4.13) and (4.14) we clearly see that this aproximation will not hold when the atom is

driven at single-photon resonance. We therefore assume that the atom is driven near two-photon

resonance and that the ratio (Ω/2)2 / (α/2)2 is much less than one. The level shifts clearly cause

a shift in the two-photon resonance frequency as well. If the drive is resonant with the bare two-

photon resonant frequency, it may not be resonant with the shifted frequency. We therefore define

the effective detuning from two-photon resonance:

2∆eff = −2δ + δf − δg = −2δ +

(
Ω

2

)2 1

α/2 + δ

(
ξ2 − 1

)
. (4.15)

Equations (4.13) and (4.15) have already confirmed two of the observations made in the previous

section. For this approximate model, we see that the effective two-photon drive is proportional to

ξ and inversely proportional to α, confirming what we see in Figs. 4.3 and 4.4. It is also clear that,

when both dipole moments are equal we get the symmetrical steady states in Fig. 4.3. The levels

shift further from their bare frequencies as the drive strength increases; however, if ξ = 1, the shift

is zero.

To find analytic expressions for the steady state populations, we may take the approximation
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one step further. While we have adiabatically removed the state |e〉 from the excitation process, it

is still required for the cascade decay. Considering that we have assumed the anharmonicity of the

atom is large, the factors in the master equation, Eq. (3.30), oscillating at frequency |ωeg − ωfe|
average to zero (Ref. [27], p. 173). The cross terms which arise from multiplying Σ̂ and Σ̂† can

then be neglected, leaving us with the master equation in the secular approximation

d

dt
ρ̂ =

1

i~
[Ĥeff, ρ̂] +

γ

2

(
2σ̂−egρ̂σ̂

+
eg − σ̂+

egσ̂
−
egρ̂− ρ̂σ̂+

egσ̂
−
eg

)
+
γ

2
ξ2
(

2σ̂−feρ̂σ̂
+
fe − σ̂+

feσ̂
−
feρ̂− ρ̂σ̂+

feσ̂
−
fe

)
,

(4.16)

with separate decay operators σ̂−eg
(
σ̂+
eg

)
= |g〉 〈e|

(
|e〉 〈g|

)
and σ̂−fe

(
σ̂+
fe

)
= |e〉 〈f |

(
|f〉 〈e|

)
. We

then expand the density operator in the form

ρ̂(t) =
∑

i,j∈{g,e,f}

ρij(t) |i〉 〈j| , (4.17)

and obtain nine coupled differential equations for the density matrix elements. Using the fact that

ρff = 1 − ρgg − ρee, we are able to reduce these to two sets of four coupled differential equations(
d
dtx = ẋ

)
:

ρ̇gg = i
Ωeff

2
ρgf (t) + γρee(t)− i

Ωeff

2
ρfg(t), (4.18a)

ρ̇gf = 2i
Ωeff

2
ρgg(t)−

(γ
2
ξ2 − i∆eff

)
ρgf + i

Ωeff

2
ρee(t)− i

Ωeff

2
, (4.18b)

ρ̇ee = −γξ2ρgg(t)− γ
(
1 + ξ2

)
ρee(t) + γξ2, (4.18c)

ρ̇fg = −2i
Ωeff

2
ρgg(t)− i

Ωeff

2
ρee(t)−

(γ
2
ξ2 + i∆eff

)
ρfg(t) + i

Ωeff

2
, (4.18d)

and

ρ̇ge = −
(γ

2
+ iδg

)
ρge(t)− i

Ωeff

2
ρfe(t), (4.19a)

ρ̇eg = −
(γ

2
− iδg

)
ρeg(t) + i

Ωeff

2
ρef (t), (4.19b)

ρ̇ef = i
Ωeff

2
ρeg(t)−

(γ
2

(
1 + ξ2

)
− i (δf − 2δ)

)
ρef (t), (4.19c)

ρ̇fe = −iΩeff

2
ρge(t)−

(γ
2

(
1 + ξ2

)
+ i (δf − 2δ)

)
ρfe(t). (4.19d)

Solving for the steady state by setting the derivatives to zero, we find the following solutions:

ρssgg =
1

Z

[(
Ωeff

2

)2

+ ∆2
eff +

γ2

2
ξ4

]
, (4.20a)

ρssee =
1

Z
ξ2

(
Ωeff

2

)2

, (4.20b)
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ρssff =
1

Z

(
Ωeff

2

)2

, (4.20c)

ρssgf =
1

Z

(
Ωeff

2

)[
−∆eff + i

ξ2

2

]
, (4.20d)

ρssge = 0, (4.20e)

ρssef = 0, (4.20f)

and

ρssij =
(
ρssji
)∗
, (4.20g)

with denominator

Z =

(
Ωeff

2

)2 (
2 + ξ2

)
+ ∆2

eff +
γ2

2
ξ4. (4.21)

We have assumed

2

(
Ω

2

)2
(
ξ2 − 1

)
(α/2)2 < 1. (4.22)

We therefore expect, for a fixed α, that, as the drive strength increases, the analytic results diverge

from the correct numerical results. We clearly see this in Fig. 4.5 where ξ 6= 1. When ξ = 1,

however, the analytic expressions tend to agree as Ω increases.

The analytic expressions confirm many of the observations made. As we expect, the steady

state populations of the states |e〉 and |f〉 are dependent on the effective two-photon drive. We also

see that the steady state population of the state |e〉 is directly proportional to that of state |f〉 with

proportionality factor ξ2. When ξ = 1, we see that they are exactly the same, as demonstrated in

Fig. 4.3c.
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Figure 4.5: The absolute difference between the numerical steady states and the analytic expres-
sions at two-photon resonance. The parameters are (δ/γ, α/γ) = (0.0,−120.0)
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5 Optical Spectrum

In previous chapters, we have mentioned that our three-level atom of interest undergoes a

cascaded decay. In this chapter we will see that the atom not only decays from the state |f〉 to |e〉
and then from |e〉 to the state |g〉, but, if the drive is strong enough, it will also make transitions

between what are called dressed states. We start this chapter with a discussion on the dressed state

picture and then we derive an expression for the dressed states of our three-level atom driven at two-

photon resonance. In order to look at the fluorescence spectrum, we will then show how the electric

field operator, as defined in Eq. (2.24a), can be expressed in terms of the atomic decay operator

Σ̂, Eq. (3.16). Making this substitution in the first-order correlation function, Eq. (3.32), we use

the Wiener-Khintchine theorem (Ref. [53], pp. 56-60) and calculate the power spectrum of the

fluorescence. Following the steps of the previous chapter, we then investigate how the fluorescence

spectrum changes as the different parameters are varied.

5.1 Dressed States

The bare states of the atom, |g〉 , |e〉, and |f〉, are eigenstates of the bare Hamiltonian, Eq. (2.43).

They are not, however, eigenstates of the full Hamiltonian, Eq. (4.6). The eigenstates of the full

Hamiltonian, including the interaction with the coherent driving field, are the so-called dressed

states. In this section we will derive expressions for the dressed states and their respective eigen-

frequencies at two-photon resonance.

5.1.1 Analytic expression

We adopt the bare states of the atom as basis states and identify them with the basis vectors:

|g〉 −→

1

0

0

 , |e〉 −→

0

1

0

 , |f〉 −→

0

0

1

 . (5.1)

Thus we restate the time-independent Hamiltonian, Eq. (4.6), in matrix form:

Ĥ −→ ~

0 Ω
2 0

Ω
2 −α

2 − δ ξΩ
2

0 ξΩ
2 −2δ

 . (5.2)
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Figure 5.1: Dressed states of the atom at two-photon resonance, δ = 0, with all possible decay
transitions shown. As the driving field increases (dashed lines), the |g〉 and |f〉 states split to acquire
three dressed state components: |+〉 , |−〉, and |0〉. The intermediate state |e〉 splits to acquire only
|+〉 and |−〉 components.

We then solve for the dressed states by diagonalising the Hamiltonian matrix, beginning with the

characteristic polynomial

λ3 +
(α

2
+ 3δ

)
λ2 +

[
(α+ 2δ) δ −

(
Ω

2

)2 (
1 + ξ2

)]
λ− 2δ

(
Ω

2

)2

= 0. (5.3)

Being cubic, this polynomial has a complicated general solution, and therefore, to simplify, we

specialize to the case of primary interest, two-photon resonance, where for δ = 0 the three eigen-

frequencies are

ω0 = 0, (5.4a)

ω± = −α
4
±
√(α

4

)2
+

(
Ω

2

)2

(1 + ξ2), (5.4b)

with corresponding eigenvectors defining the dressed states:

|0〉 −→ 1√
1 + ξ2

 ξ

0

−1

 , (5.5a)

|±〉 −→ 1√
4ω2
± + Ω2 (1 + ξ2)

 Ω

2ω±

ξΩ

 . (5.5b)
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We now invert the transformation made in Sect. 4.1.2 with the unitary evolution operator

Û(t) = e−iωdt|e〉〈e|e−2iωdt|f〉〈f |, (5.6)

which is Eq. (4.3), with ground state energy set to zero, and then consider how the dressed states

evolve with time:

|0〉 → e−iω0t√
1 + ξ2

(
ξ |g〉 − e−2iωdt |f〉

)
, (5.7a)

|±〉 → e−iω±t√
4ω2
± + Ω2 (1 + ξ2)

(
Ω |g〉+ 2ω±e

−iωdt |e〉+ ξΩe−2iωdt |f〉
)
. (5.7b)

For a standard energy eigenket, |E〉, with energy ~ω, we expect it to evolve as e−iωt. We see this is

the case in Eq. (5.7), but with the dressed state time-evolution from the interaction picture adding

to the free evolution of the time-dependent states e−iωdt |e〉 and e−2iωdt |f〉. We thus see that the

frequencies appearing in Eq. (5.7) are combinations of the dressed state frequencies, Eq. (5.4), and

the drive frequency ωd which comes from the transformation out of the interaction picture. These

eight frequencies are shown in Fig. 5.1, in an energy-level like diagram, where 2ωd = ωfg. We

expect twelve possible transitions to occur, with seven distinct frequencies:

ω0 = ωd, (5.8a)

ω1,2 = ωd ± ω+, (5.8b)

ω3,4 = ωd ± ω−, (5.8c)

ω5,6 = ωd ± (ω+ − ω−) . (5.8d)

We therefore expect to see seven peaks in the fluorescence spectrum, which is quite different from

the two expected transitions from the bare states cascade decay; first |f〉 → |e〉 with transition

frequency ωfe; and then |e〉 → |g〉 with transition frequency ωeg. If we consider a weak driving

field, we find the dressed state frequencies

ω0 = 0, ω+ ≈ −
α

2
, ω− ≈ 0, (5.9)

where α < 0. In this limit there are only three distinct transition frequencies:

ω′0 = ωd, ω′1 = ωd + ω+ = ωeg, ω′2 = ωd − ω+ = ωfe, (5.10)

which correspond to the cascade decay of the bare states and elastic scattering (ω′0 = ωd). As the

drive strength increases and the dressed frequencies separate further, more possible decay transitions

become available to the atom. The dressed state picture is able to give us the frequencies of the

peaks of the fluorescence spectrum; however, it can not tell us anything about relative heights of

the peaks. For us to do that we require a detailed quantum-mechanical treatment.
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5.2 First-Order Coherence

The coherence of light has long been an important topic in optics, both in classical and quantum

optics. While there exist many orders of coherence (Ref. [23], p. 35), in this section we will consider

only the first-order correlation function – originating from the discussion of fringe visibility from

interfering fields (Ref. [24], Sect. 4.2). We use this section to set out the background for the

following section where we discuss the optical spectrum of the light emitted from the coherently

driven three-level atom.

5.2.1 First-order correlation function

From a classical optics perspective, coherence was associated with interference fringes from two

superposed fields. The simplest example of this is Young’s double slit experiment, where a field is

passed through two closely spaced pinholes, interfering at a point on a screen. In this context we

introduce the first-order correlation function,

G(1)(r, t, r′, t′) = 〈Ê(−)(r, t)Ê(+)(r′, t′)〉, (5.11)

which “correlates” the electric field at two different points in space, r and r′, and at times t and t′

(Ref. [54], p. 221). From here we see the difference between the two main forms of coherence usually

discussed: temporal coherence and spatial coherence. Typically, from a quantum optics perspective,

we consider a single point detector, with r = r′, thereby considering only the temporal coherence

of the field. Adopting this restriction, from Schwarz’s inequality, we find that the magnitude of

G(1)(t, t′) is bounded by

|G(1)(t, t′)| ≤ |G(1)(t, t)G(1)(t′, t′)|1/2. (5.12)

Then defining the time variable τ ≡ t − t′, we introduce the normalised first-order correlation

function

g(1)(τ) =
〈Ê(−)(t)Ê(+)(t+ τ)〉√

〈Ê(−)(t)Ê(+)(t)〉〈Ê(−)(t+ τ)Ê(+)(t+ τ)〉
, (5.13)

which has a range of

|g(1)(τ)| ≤ 1. (5.14)

If the fields are coherent then |g(1)(τ)| = 1, whereas, if the fields are uncorrelated g(1)(τ) = 0

(Ref. [55], p. 73).

5.2.2 Radiated electric field

So far we have only considered the correlation of a generic electric field, but we would like to

focus our interest on the electric field radiated from our three-level atom. In order for us to do

that, we must first consider how the electric field may be expressed in terms of operators referring

to the field source, namely, the atom. We therefore now aim to derive an expression for the electric
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field operator, Eq. (2.24a), in the Heisenberg picture in terms of the atomic operator Σ̂.

We begin by recalling the total Hamiltonian, Eq. (3.17), where we have set the coherent driving

to zero. Under the approximation adopted in Sec. 3.1.3, this Hamiltonian governs the evolution of

the quantised electric field, Eq. (2.36a). We begin with the Heisenberg equation of motion for the

field mode operator
d

dt
âk,λ = −iωkâk,λ(t)− ig∗k,λΣ̂, (5.15)

where

âk,λ(t) = ˆ̃ak,λe
−iωkt, (5.16a)

Σ̂(t) = ˆ̃σ−eg(t)e
−iωegt + ξ ˆ̃σ−fe(t)e

−iωfet. (5.16b)

We formally integrate Eq. (5.15) to obtain

ˆ̃ak,λ(t) = âk,λ(0)− ig∗k,λ
∫ t

0
dt′ ˆ̃σ−eg(t

′)ei(ωk−ωeg)t′

− iξg∗k,λ
∫ t

0
dt′ ˆ̃σ−fe(t

′)ei(ωk−ωfe)t′ .

(5.17)

Substituting this expression into Eq. (2.36a), we may decompose the electric field into two compo-

nents,

Ê(+)(r, t) = Ê
(+)
f (r, t) + Ê(+)

s (r, t), (5.18)

where

Ê
(+)
f (r, t) = i

∑
k,λ

√
~ωk

2ε0V
êk,λâk,λ(0)e−i(ωkt−k·r), (5.19)

describes the free evolution of the electric field, and

Ê(+)
s (r, t) =

∑
k,λ

√
~ωk

2ε0V
êk,λg

∗
k,λe

ik·r
∫ t

0
dt′eiωk(t−t′)

(
ˆ̃σ−eg(t

′)e−iωegt
′
+ ξ ˆ̃σ−fee

−iωfet′
)
, (5.20)

describes the electric field radiating from the atom. This expression is the same as that which we

would expect from a single dipole, i.e. a two-level atom. We follow through the same calculation

from Carmichael (Ref. [28], Sect. 2.3.1), but with an additional dipole moment attached. Recalling

that the density of states, Eq. (3.26), is frequency independent over the range of fluorescence, we

obtain the electric field operator for the field radiated by the atom,

Ê(+)
s (r, t) = −(ωfg/2)2

4πε0c2r
(deg × r̂)× r̂Σ̂ (t− r/c) (5.21)

The first-order correlation function can now be restated as

G(1)(t+ r/c, t+ r/c+ τ) ∝ 〈Σ̂†(t)Σ̂(t+ τ)〉, (5.22)
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with normalised correlation function in the steady state limit

g(1)(τ) = lim
t→∞

〈Σ̂†(t)Σ̂(t+ τ)〉[
〈Σ̂†(t)Σ̂(t)〉〈Σ̂†(t+ τ)Σ̂(t+ τ)〉

]1/2
=
〈Σ̂†(0)Σ̂(τ)〉ss
〈Σ̂†(0)Σ̂(0)〉ss

. (5.23)

5.3 Fluorescence Spectrum

Here we present the method used to numerically calculate the fluorescence spectrum of the atom,

where we first discuss the difference between coherent and incoherent scattering, otherwise known

as elastic and inelastic scattering (Ref. [23], pp. 207-208). Having discussed how we calculate our

results, we then provide a survey of the fluorescence spectrum and how it changes as parameters

are varied.

5.3.1 Coherent and incoherent scattering

In classical optics, the intensity spectrum of a field can be calculated from the Fourier transform

of the correlation function, which is a form of the Wiener-Khintchine theorem (Ref. [56], pp. 511-

513) . Introducing the correlation function for the atomic source of the field, Eq. (5.23), we then

define the normalised power spectrum of the field (Ref. [55], p. 73)

S(ω) =
1

2π

∫ ∞
−∞

dτe−iωτg(1)(τ). (5.24)

Since there exist quantum fluctuations in the steady state, described by (Ref. [28], p. 57)

∆Σ̂ = Σ̂− 〈Σ̂〉ss, (5.25a)

∆Σ̂† = Σ̂† − 〈Σ̂†〉ss, (5.25b)

we decompose the power spectrum as

S(ω) = S(ω)coh + S(ω)inc, (5.26)

with coherent component, corresponding to elastic scattering,

S(ω)coh =
1

2π

1

〈Σ̂†Σ̂〉ss

∫ ∞
−∞

dτeiωτ 〈Σ̂†〉ss〈Σ̂〉ss, (5.27)

and incoherent component, corresponding to inelastic scattering,

S(ω)inc =
1

2π

1

〈Σ̂†Σ̂〉ss

∫ ∞
−∞

dτeiωτ 〈∆Σ̂†(0)∆Σ̂(τ)〉ss. (5.28)
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Figure 5.2: Coherent and incoherent intensity ratio (solid) compared with (Ω/γ)2 (dashed).
Parameters are (α/γ, δ/γ, ξ) = (−120.0, 0.0, 1.0).

Evaluating the steady state expectations in Eq. (5.27), we find that the operator average, 〈Σ̂〉ss,
is proportional to the steady state coherences, or off-diagonal elements of the density operator,

whereas 〈Σ̂†Σ̂〉ss is proportional to the steady state populations, ρee and ρff . Recalling the sim-

plified adiabatic model, Eq. (4.20), the steady state two-photon coherences are proportional to a

single power of the effective two-photon drive, while the populations are proportional to the square

of the effective drive. We find the intensity ratio of coherent to incoherent scattering is

Iinc

Icoh
=
〈∆Σ̂†∆Σ̂〉ss
〈Σ̂†〉ss〈Σ̂〉ss

=
〈Σ̂†Σ̂〉ss − 〈Σ̂†〉ss〈Σ̂〉ss

〈Σ̂†〉ss〈Σ̂〉ss
.

We see in Fig. 5.2 that this intensity ratio increases proportionally with (Ω/γ)2. We therefore ex-

pect, at weak drives, for coherent scattering to dominate. As the drive strength increases, however,

inelastic scattering of the radiation dominates. This works in parallel with the development of the

incoherent spectrum, where for weak drives we expect to see only the two transition frequencies,

ωeg and ωfe, and for strong drives, we see the dressed state “splitting”.

5.3.2 Single-photon resonance

We have seen in Fig. 4.2 that if the driving field is resonant with the ωeg transition we achieve

single-photon resonance, which behaves similar to a driven two-level atom. The fluorescence spec-

trum of a driven two-level atom has been widely studied in the past. It is, in general, a much simpler

version of the model we are looking at. The driven two-level atom has simpler dressed states, with

corresponding eigenfrequencies that account for three peaks in the fluorescence spectrum: ωd and

ωd ± Ω/2 (Ref. [57], pp. 187-188). We expect for a very weak drive that the scattering of the
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Figure 5.3: Incoherent fluorescence spectrum for a drive field Ω/γ = 0.0001 (Left) and Ω/γ = 5.0
(Right). Parameters are (α/γ, δ/γ, ξ) = (−120.0, 60.0, 1.0).

field will be entirely coherent, resulting in a delta function centred on the drive frequency. As the

drive strength increases, incoherent scattering dominates and sidebands appear at ±Ω, producing

a three peak spectrum known as the Mollow triplet [15]. Both of these spectral features are shown

in Fig. 5.3.

5.3.3 Near two-photon resonance

Single-photon resonance in this system is useful in that we can reproduce results for a known

model, that being a two-level atom. We now take one step closer to the region we are most interested

in – two-photon resonance. Before we investigate the resonance case, we first consider the effect

that the drive detuning has on the fluorescence.

We know from our previous discussion on coherent and incoherent scattering that, for low

drive strengths, elastic scattering dominates the power spectrum. For very weak drive fields, we see

peaks in the small incoherent component of the power spectrum corresponding to the two transition

frequencies, ωeg and ωfe. In Fig. 5.4, this corresponds to peaks at ωd ± (α/2 + δ). We expect the

two fluorescence peaks to converge near the single-photon resonance δ = −α/2, as only the ωeg

transition frequency appears.

It is important to mention how the incoherent fluorescence spectrum is calculated. In the

previous section we mentioned that we are interested in the normalised first-order correlation

function. The Fourier transform of the normalised correlation function results in a normalised
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Figure 5.4: Incoherent fluorescence spectrum as a function of drive detuning and emission fre-
quency for a weak drive field Ω/γ = 0.0001. Parameters are (α/γ, ξ) = (−120.0, 1.0).

power spectrum ∫ ∞
−∞

dωS(ω) = 1. (5.29)

For a very weak drive field that is far off two-photon resonance, the effective two-photon drive,

Eq. (4.13), is also very weak, leading to a very small steady-state population in the state |f〉. It

is still possible for the two-photon transition to occur, however, leading to a cascade decay via

the state |e〉. If we were to evaluate the non-normalised correlation function, we would expect the

intensity of the fluorescence peaks to decrease for the very weak and off resonant drives. When

comparing power spectra for near resonant drive frequencies, as in Fig. 5.4, it would be difficult to

see the peaks on the same scale. Therefore, we use the normalised correlation function, allowing

the fluorescence peaks to be easily compared.

We shift our attention now to the case of a strong driving field where, as Ω increases, we see,

in Fig. 5.5, the spectrum peaks split. It appears that the peaks split evenly whereas, if the drive

is closer to resonance, the spectrum splits into three distinct groups. In Fig. 5.6, for δ = 5.0, the

central drive peak is clearly split into a triplet. The large peaks either side of this triplet are close

to where the bare cascade transitions occur for a weak drive. Therefore, when the peaks split,

they are most likely related to |f〉 → |e〉 and |e〉 → |g〉 transitions. We can infer that, for larger

detunings, this grouping of peaks by relation to the ωeg, ωfe, and ωd frequencies, still holds, even if

they do not appear to be grouped.

We expect the drive frequency transition to increase in intensity closer to two-photon resonance,

which we see in Fig. 5.7. An important dependency in this effect is the dependency on dipole

moment ratio, which appears in the shift of the two-photon resonance, Eq. (4.15). We saw, in

Fig. 4.4, that, for ξ < 1, the two-photon resonance shifts towards positive values of δ while the

opposite occurs for ξ > 1. This effect is also shown in the spectra, where it determines the detuning
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Figure 5.5: Incoherent fluorescence spectrum for δ = 15.0 as a function of drive strength. Param-
eters are (α/γ, ξ) = (−120.0, 1.0).
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Figure 5.6: Incoherent fluorescence spectrum for δ = 5.0 (Left) and δ = 15.0 (Right). Parameters
are (Ω/γ, α/γ, ξ) = (50.0,−120.0, 1.0).
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(c) ξ = 1.5

Figure 5.7: Incoherent fluorescence spectrum as a function of drive detuning and emission
frequency for three different values of dipole moment ratio. Parameters are (Ω/γ, α/γ) =
(40.0,−120.0)
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Figure 5.8: Incoherent fluorescence spectrum for a drive field Ω/γ = 0.0001 (Left) and Ω/γ = 40.0
(Right). Parameters are (α/γ, δ/γ, ξ) = (−120.0, 0.0, 1.0).

where the central peak is most intense. The dipole moment ratio also appears to affect how far

detuned the drive frequency can be for the splitting to appear; for an increasing ξ, the region where

splitting occurs also increases. Recalling the derived expression for the effective two-photon drive,

Eq. (4.13), we would expect a stronger effective drive for a large ξ – even for a large detuning.

5.3.4 Two-photon resonance

We have now arrived at the main focus of this thesis – two-photon resonance. When δ = 0,

the spectrum behaves very similarly to what has been discussed so far. One of the important

differences in describing this case, however, is that we have simple expressions for the dressed

states and their eigenfrequencies, respectively Eqs. (5.5) and (5.4). It has already been mentioned

that transitions between the dressed states determine the positions of the peaks in the fluorescence

spectrum. Having the explicit form of the dressed states, we are able to confidently explain the

spectrum.

In Fig. 5.8 we see the stark contrast between the weak and strong driving limits. As we have

established, for the weak drive field, we see two peaks centred on the bare transition frequencies,

ωeg and ωfe. Then, for a strong drive field, the two single-photon peaks are Stark shifted away and

split into a doublet [12, 58], while a central triplet emerges around the drive frequency, ωfg/2.

Which transitions, then, are responsible for the peaks? For the resonance case, we need only look

at Fig. 5.1 to answer this. For a sufficiently weak drive, the left most peak coincides in frequency

with the transition between the states |f〉 and |e〉, with frequency ωfe = ωd + α/2. Similarly, the
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Figure 5.9: Split spectrum at two-photon resonance with labelled transitions from Fig. 5.8.
Parameters are (Ω/γ, α/γ, δ/γ, ξ) = (40.0,−120.0, 0.0, 1.0).

right most peaks corresponds to the next transition in the cascaded decay, between the states |e〉
and |f〉, with frequency ωeg = ωd − α/2.

As the drive strength increases the dressed state energies split and the degeneracy of the |0〉
and |−〉 states is lifted, allowing for more possible transitions to occur as the atom decays to the

ground state. The transition frequencies of each peak, as labelled in Fig. 5.9, are a direct result of

transitions amongst the dressed states. With the degeneracy of the dressed states lifted, the left

most doublet arises from two transitions: |−〉 to |+〉 and |0〉 to |+〉. In order to conserve energy,

these transitions are immediately followed by either a |+〉 to |−〉 or |+〉 to |0〉 transition. Moving

to the central triplet we see the emergence of an intense central peak corresponding to the drive

frequency. We see that there are four possible transitions with frequency ωd. The surrounding

sidepeaks of this central triplet, with frequencies ωd ± ω−, are a result of the |0〉 to |−〉 to |0〉
cascade transition.

We clearly see the emergences of the dressed state splitting in Fig. 5.10. When ξ 6= 1 the split

spectrum appears to be asymmetrical. We see this more clearly in Fig. 5.11 where we have also

illustrated the spectrum when the drive is resonant with the shifted two-photon resonance. For a

lower dipole ratio, the fluorescence peaks corresponding to the deg transitions are amplified, while

for a higher dipole ratio, the dfe transitions are amplified. When the drive is resonant with the

shifted two-photon resonance this effect is even more pronounced. Looking at the central triplet,

one of the peaks is almost completely suppressed. Holm and Sargent suggest that this effect is due

to the Stark shift of the energy levels [59].
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(a) ξ = 0.5
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(b) ξ = 1.0
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(c) ξ = 1.5

Figure 5.10: Incoherent fluorescence spectrum as a function of drive strength and emission fre-
quency for three different values of dipole moment ratio. Parameters are (α/γ, δ/γ) = (−120.0, 0.0).
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(a) δ = 0 (Left) and ∆eff = 0 (Right). ξ = 0.5
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Figure 5.11: Incoherent fluorescence spectrum with the drive detuning resonant with the two-
photon transition, δ = 0 (Left), and the drive detuning resonant with the shifted two-photon
transition, ∆eff = 0 (Right), given by Eq. (4.15). Parameters are (Ω/γ, α/γ) = (40.0,−120.0).
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6 Photon-Photon Correlations

So far we have seen how the electric field radiated from the atom fluctuates with time, giving

us the fluorescence spectrum. In this chapter we will investigate how the intensity of the electric

field fluctuates by looking at the second-order correlation function. By treating the system and its

interaction as a photon-counting experiment, we see that the second-order correlation is related to

the likelihood of detecting two photons separated by a time τ .

We first describe what it means for light to have second-order coherence in both a classical

and quantum sense. We then discuss what “bunched” and “anti-bunched” light is, highlighting

the difference between classical and non-classical light. With these definitions in mind, we survey

how the second-order correlation is affected by changing parameters. We consider the total dipole

operator Σ̂, Eq.(3.16), and the separate dipole operators that, together, compose Σ̂.

Next we set out a method that will allow us to frequency filter the fluorescence of the atom.

We do this by adding a cavity resonator, modelling a transmission filter. We introduce the theory

of cascaded open system where the output field of the atom is the input field to the cavity [60].

This allows us to calculate the second-order correlations of individual transitions of the cascaded

decay and characterise the emitted light.

Finally we take the method one step further by introducing a second filter cavity. With this

second filter we can calculate second-order cross-correlations. Given an emission from cavity a, we

find the likelihood of detecting an emission from cavity b. From the cross-correlations we set out

to characterise the cascaded decay and see if the dressed state cascade decay sufficiently describes

the several peaks we see in the incoherent fluorescence spectrum.

6.1 Photon Counting Statistics

In this section we will give an overview of what the second-order correlation function is and

what it quantifies. We then describe the three main results we would expect from the second-order

correlation function – bunched, coherent, and anti-bunched light – with physical examples of each.

6.1.1 Second-order correlation

In classical optics, the second-order correlation function measures the fluctuations in intensity

(Ref. [54], p. 229):

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉〈I(t+ τ)〉 , (6.1)
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where I(t) is the intensity of a field at a time t. We consider a statistically stationary source such

that 〈I(t)〉 = 〈I(t+ τ)〉 = 〈I〉, with fluctuations

∆I(t) = I(t)− 〈I〉, (6.2)

as in Eq. (5.25). The correlation function now becomes

g(2)(τ) =
〈I〉2 + 〈I〉〈∆I(t)〉+ 〈I〉〈∆I(t+ τ)〉+ 〈∆I(t)∆I(t+ τ)〉

〈I〉〈I〉

=
〈I(t)〉2 + 〈∆I(t)∆I(t+ τ)〉

〈I〉2

= 1 +
〈∆I(t)∆I(t+ τ)〉

〈I〉2 , (6.3)

where 〈∆I(t)〉 is zero by definition. In the long time delay limit, τ →∞, the intensity fluctuations

will be completely uncorrelated and

g(2)(τ →∞) = 1. (6.4)

Using Cauchy’s inequality, for zero time delay we find the correlation is bounded by

g(2)(0) =
〈I2〉
〈I〉2 ≥ 1. (6.5)

6.1.2 Bunching and antibunching

Returning to familiar notation, we introduce the quantum-mechanical version of the second-

order correlation function (Ref. [61], p. 212):

g(2)(τ) =
〈Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(τ)〉
〈Ê(−)(t)Ê(+)(t)〉〈Ê(−)(t+ τ)Ê(+)(t+ τ)〉

. (6.6)

This correlation function can be generalised to the nth order, corresponding to the response where

n photons are detected in a time-ordered sequence.

The Hanbury Brown and Twiss experiment (Ref. [2]), which was one of the first quantum optics

experiments, investigates intensity correlations of a beam of light. A light beam is split by a 50:50

beam splitter, and thus equally divided onto two detectors, as shown in Fig. 6.1a. The detector

count is proportional to the intensity of the incoming beam, and therefore we write the second-order

correlation function in terms of photon number operator:

g(2)(τ) =
〈: n̂1(t)n̂2(t+ τ) :〉
〈n̂1(t)〉〈n̂2(t+ τ)〉 =

〈â†1(t)â†2(t+ τ)â2(t+ τ)â1(t)〉
〈â†1(t)â1(t)〉〈â†2(t+ τ)â2(t+ τ)〉

, (6.7)

where n̂i is the number operator for the ith detector; 〈: · · · :〉 denotes normal ordering and time

ordering, where the â† terms are to the left of the â terms and the earliest times are on the outside.
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Figure 6.1: Schematic of a Hanbury Brown experiment (a) and the resulting second-order corre-
lation (b) for chaotic light (solid) and coherent light (dashed).

If the field is in a coherent state the second-order correlation is unity for all τ . For a classical

field, when τ is less than the coherence time τc there is increased correlation due to intensity

fluctuations, which results in a higher initial second-order correlation. In the case of thermal light

source (Ref. [23], p. 40)

g(2)(0) = 1 + |g(1)(0)|2 = 2, (6.8)

as show in Fig. 6.1b. The probability that a photon is detected at detector one is higher when the

intensity fluctuations are high, hence there is a high probability that a photon is also detected at

the same time, or at least within a correlation time, at detector two.

Now consider a source with long time intervals separating photon emissions. Individual photons

arriving at the beam splitter have a 50% chance of being detected by detector one. If a photon

is detected by detector one, due to the long time intervals there will be no recorded events from

detector two at the same time, leading to a second-order correlation g(2)(0) = 0 – clearly a non-

classical result!

These results lead us to the following classification: bunched light, with g(2)(0) > 1; coherent

light, with g(2)(0) = 1; and anti-bunched light, with g(2)(0) < 1 [9, 62, 63]. In the context of a

photon detection experiment, bunched light is light where photons arrive grouped or “bunched”;

when a photon is detected, there is a high probability to detect another one at the same time.

Coherent light has Poissonian photon statistics, where there are random time intervals between

photon detections. Lastly, anti-bunched light has photons that are regularly spaced in time. The

three cases are illustrated in Fig. 6.2.

An important example of antibunching is the coherently driven two-level atom [7, 8]. The

atom can only store a single quantum of energy at any time, so when it decays to the ground
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Figure 6.2: Comparison of photon streams for bunched, coherent (random), and anti-bunched
light.
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Figure 6.3: Second-order correlation for the atom driven at single-photon resonance for Ω/γ =
0.0001 (Left) and Ω/γ = 2.75 (Right). Parameters are (α/γ, δ/γ, ξ) = (−120.0, 60.0, 1.0).
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Figure 6.4: Second-order photon correlations for weak drive fields. Parameters are (α/γ, δ/γ, ξ) =
(−120.0, 0.0, 1.0).

state, emitting a photon, it must be excited again before emitting another. This leads to an initial

correlation value of g(2)(0) = 0, defying the boundary defined for a classical system (Fig. 6.3).

6.2 Unfiltered Photon Correlations

Now that we have defined the three main classes for second-order correlations, we investigate

the characteristics of the emitted light from our driven three-level atom. We start by considering

the total radiated field, Eq. (5.21), which is characterized by the dipole operator Σ̂ = σ̂−eg + ξσ̂−fe,

and survey the effects that changing parameters has on the nature of the emitted light. We then

decompose Σ̂ into its separate dipole operator components, allowing us to investigate the cross-

correlations of the two components.

6.2.1 Total radiated field

Following the calculation of the first-order correlation function from the previous chapter, we

substitute Eq. (5.21) into Eq. (6.6), obtaining the normalised second-order correlation function for

the three-level atom:

g
(2)
Unfiltered(τ) =

〈Σ̂†(0)Σ̂†(τ)Σ̂(τ)Σ̂(0)〉ss
〈Σ̂†Σ̂〉2ss

. (6.9)

This correlation function is proportional to the probability of an emission occurring a time τ after

a first emission has been detected at τ = 0. The total operator Σ is a combination of the decay
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operators for the two dipoles, so an emission can be from either the |f〉 to |e〉 transition, or the |e〉
to |g〉 transition. The probability for a jump to occur in a time interval [t, t+ dt] is then

γ〈Σ̂†Σ̂〉dt = γ
(
ρee + ξ2ρff

)
dt, (6.10)

which is directly proportional to the population in the states |e〉 and |f〉.
In the previous chapter we showed that, by driving the atom at the single-photon resonance

(ωd = ωeg) we obtain the spectrum of a driven two-level atom. It comes as no surprise, then, that

we would obtain the second-order correlation of the driven two-level atom as well. At single-photon

resonance, most of the steady state population is in either the state |g〉 or state |e〉, with a negligible

amount in the state |f〉. If a photon is detected from the atom, the decay operator moves the |e〉
state population into the state |g〉. Immediately following an emission, there will be no population

in the |e〉 state, so no emission can occur, regardless of the driving field strength, as we see in

Fig. 6.3. As τ increases, the probability of the atom being in the |e〉 state increases and the second-

order correlation approaches unity. For sufficiently strong drive fields, the atom state oscillates

between |g〉 and |e〉, a process known as Rabi oscillation. We see the oscillations in Fig. 6.3, where

g(2)(τ) oscillates at the Rabi frequency Ω.

Considering now driving the atom at two-photon resonance we see things are very different

from the two-level case. If the atom is excited to the |f〉 state, it needs to emit two photons

in order to decay to the ground state, so we no longer expect to see any antibunching. This is

most noticeable when the drive field is very weak, as shown in Fig. 6.4. For a very weak drive

field, the effective two-photon drive is also very weak. It is, however, still possible for the field to

excite the atom to the state |f〉. As the atom decays, the photons are emitted in pairs separated

in time by approximately an atomic lifetime and the pairs, for a weak drive, are separated by a

much greater time. Thus, detecting a first photon tells us that there is a much higher probability

(than on average) to detect another photon within the next atomic lifetime. As the drive strength

increases, the average time between detections decreases, causing the emitted photons to appear

less “bunched”. This effect is what causes the initial correlation value to increase for lower drive

strengths in Fig. 6.4. Note that as the correlations decay to unity they also oscillate at a frequency

equal to the detuning from single-photon resonance, α/2 + δ, which is an effect we would expect

from the example of a two-level atom driven off resonance.

For an increased drive strength, we start to see behaviour similar to that of a driven two-

level atom discussed earlier. The correlation function oscillates in a fashion similar to the Rabi

oscillation of the two-level atom. In this regime the effective two-photon drive is strong enough to

almost constantly excite the atom to the |f〉 state. The correlations for three different values of ξ are

shown in Figs. 6.5, where we see three main differences due to the different dipole moment ratios.

Firstly, the oscillations increase in frequency as ξ increases. We find, in fact, that this frequency is

the dressed frequency |ω−|/2π, Eq. (5.4). Figures 5.1 and 5.9 show that the most prominent beat

frequency of the different transitions is |ω−|, which grows larger as ξ increases. Similarly, the much

more rapid oscillations have a frequency |ω+|/2π, another expected beat frequency.
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Figure 6.5: Second-order correlations for three different values of ξ. Parameters are
(Ω/γ, α/γ, δ/γ) = (40.0,−120.0, 0.0).
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The second observation is that the rate at which the correlations decay to unity depends on

ξ. The |f〉 to |e〉 transition decays at a rate γξ2, rather than γ, therefore affecting the average

time taken to reach the steady-state after an emission. For ξ > 1, then, the photon correlation is

expected to decay to unity faster than ξ < 1, as is clearly shown in Fig. 6.5.

Finally, the initial correlation value also appears to depend on the dipole moment ratio. We saw

in Fig. 4.4 and from the analytic steady-state density operator, Eq. (4.20), that the steady state

population of the state |e〉 depends on ξ2. For ξ < 1, Fig. 4.4a, most of the population is in either

the |g〉 or |f〉 states. After an emission occurs, the atom will be in state |e〉, giving a very high

probability of another emission to occur, therefore g(2)(0) > 1 and the emitted light is bunched, as

shown in Fig. 6.5a. For ξ > 1, Fig. 6.5c, most of the population is either in the |g〉 and |e〉 states.

Therefore, after an emission occurs the atom will more likely be in state |g〉, and there is a low

probability of another emission occurring leading to more anti-bunched light.

6.2.2 Separate dipole components

Let us for a moment consider the non-normalised second-order correlation function

G(2)(τ) = 〈Σ̂†(0)Σ̂†(τ)Σ̂(τ)Σ̂(0)〉. (6.11)

Substituting in the explicit form of Σ̂, Eq. (3.16), and expanding, the non-normalised correlation

becomes

G(2)(τ) = 〈σ̂+
eg(0)σ̂+

eg(τ)σ̂−eg(τ)σ̂−eg(0)〉ss + ξ4〈σ̂+
fe(0)σ̂+

fe(τ)σ̂−fe(τ)σ̂−fe(0)〉ss
+ ξ2〈σ̂+

fe(0)σ̂+
eg(τ)σ̂−eg(τ)σ̂−fe(0)〉ss + ξ2〈σ̂+

eg(0)σ̂+
fe(τ)σ̂−fe(τ)σ̂−eg(0)〉ss,

(6.12)

plus non-symmetrical terms. The second-order correlation of Σ̂ is then the sum of four correlations

for the separate dipole operators, which we classify under two groups: auto-correlations and cross-

correlations. We define the auto-correlation function for the deg dipole as

g(2)
eg (τ) =

〈σ̂+
eg(0)σ̂+

eg(τ)σ̂−eg(τ)σ̂−eg(0)〉ss
〈σ̂+
egσ̂
−
eg〉2ss

, (6.13)

and similarly for the dfe dipole

g
(2)
fe (τ) =

〈σ̂+
fe(0)σ̂+

fe(τ)σ̂−fe(τ)σ̂−fe(0)〉ss
〈σ̂+
feσ̂
−
fe〉2ss

. (6.14)

At weak drive strengths the dipole operators directly correspond to the two cascade transitions,

|f〉 → |e〉 and |e〉 → |g〉. Just like the two-level atom, after emitting a photon each dipole must

be excited before it can emit again. We see this in Fig. 6.6 where, for both dipole operators,

g(2)(0) = 0.0. The main difference between these two correlations and that of a two-level atom, in

Fig. 6.3 (Left), is that correlations in Fig. 6.6 also oscillate at a rapid frequency. This frequency
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is in fact the detuning of the drive frequency from the respective dipole frequency, α/2, which is

what we would expect from a two-level system driven off resonance.

At strong drive strengths the atom no longer has transitions between the bare states. We can

expand the bare states as a combination of dressed states, Eq. (5.5), and thus find that each dipole

operator can be written as a combination of six different dressed state transitions. Despite this,

the separate photon correlations for both dipoles still exhibit perfect antibunching, as we see in

Fig. 6.7. The frequencies at which the oscillations in the correlations occur are in fact the same as

for the total radiated field, i.e., ω−/2π and ω+/2π, for the slow and fast oscillations respectively.

6.2.3 Cross-correlations

The two remaining terms from Eq. 6.12 are, as mentioned, cross-correlations. For the auto-

correlation we consider the likelihood of detecting an emission from one mode at a time τ after

detecting an emission from the same mode. For the cross-correlation, we consider the two modes

to be different. We first define the cross-correlation of an emission from the deg dipole a time τ

after detecting an emission from the dfe dipole:

g
(2)
fe→eg =

〈σ̂+
fe(0)σ̂+

eg(τ)σ̂−eg(τ)σ̂−fe(0)〉ss
〈σ̂+
feσ̂
−
fe〉ss〈σ̂+

egσ̂
−
eg〉ss

, (6.15)

and then the cross-correlation for the dfe dipole conditioned on an emission from the deg dipole:

g
(2)
eg→fe =

〈σ̂+
eg(0)σ̂+

fe(τ)σ̂−fe(τ)σ̂−eg(0)〉ss
〈σ̂+
feσ̂
−
fe〉ss〈σ̂+

egσ̂
−
eg〉ss

. (6.16)

We begin, as always, with the simpler case of a weak drive. By investigating the cross-

correlations we see that they behave exactly as we would expect for the cascaded decay. The

photon correlation g
(2)
eg→fe(τ), conditioned first on an emission from deg is clearly anti-correlated,

as demonstrated in Fig. 6.8a. As we have established, the probability of getting a photon with fre-

quency ωfe directly after detecting one with frequency ωeg is exactly zero. Swapping the operator

order the cross-correlation, g
(2)
fe→eg(τ), Fig. 6.8b, is strongly correlated. We expect for a decreasing

drive strength that, much like in Fig. 6.4, g(2)(0) will increase.

Once again things are complicated once the dressed state transitions are introduced for stronger

drive strengths. We have already encountered the features of the cross-correlations in Fig. 6.9,

however, where we considered the photon correlations of the total radiated field. For the eg → fe

cross-correlation, Fig. 6.9a, we see perfect initial anti-correlation, and the oscillations at frequency

|ω−|/2π are similar to a driven two-level atom. A stronger effective drive allows population to be

shifted into the state |f〉 at a much faster rate, allowing for a transition from |f〉 to |e〉 to occur at

a later time delay. The fe→ eg cross-correlation, Fig. 6.9b, is strongly correlated, though nowhere

near as correlated as for a weaker drive.
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Figure 6.6: Second-order correlations of the separate dipole operators. Parameters are
(Ω/γ, α/γ, δ/γ, ξ) = (5.0,−120.0, 0.0, 1.0).
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Figure 6.7: Second-order correlations of the separate dipole operators. Parameters are
(Ω/γ, α/γ, δ/γ, ξ) = (40.0,−120.0, 0.0, 1.0).
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Figure 6.8: Cross-correlations of the separate dipole operators. Parameters are
(Ω/γ, α/γ, δ/γ, ξ) = (5.0,−120.0, 0.0, 1.0).
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(Ω/γ, α/γ, δ/γ, ξ) = (40.0,−120.0, 0.0, 1.0).
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6.3 Lorentzian Filter Cavity

We now aim to investigate the photon correlations for specific transitions made in the cascade

decay. We were able to do this in the limited case of a very weak drive by considering the separate

dipole operators, σ̂−eg and σ̂−fe. Once the drive strength increases and more transitions are made

possible, however, we must take another approach.

In an experimental setting, in order to correlate the photons of a specific transition we would first

need to filter the light. In this section we will adopt a simple method by coupling the fluorescence

of the three-level atom into a scanning interferometer – a system known as a “cascaded system”

[60]. We begin by describing the scanning interferometer as a lossy cavity, which has a Lorentzian

shaped power spectrum. We then give a brief outline of a cascaded open system in the context

of our system of interest. With the cavity acting as a Lorentzian filter we are able to focus our

interest onto specific transitions.

With the background theory set, we then calculate the photon correlations of the cascade

transitions, referencing back to the peaks of the incoherent fluorescence spectrum, and provide a

numerical survey.

6.3.1 Filter Cavity

We model the scanning interferometer as a damped harmonic oscillator, with full Hamiltonian

similar to Eq. (3.17), but with

Ĥa = ~∆aâ
†â, (6.17)

where ∆a is the detuning of the oscillator relative to ωd, and â† (â) are the creation (annihilation)

operators. The derivation for the master equation of the damped harmonic oscillator follows the

same procedure used to derive the master equation of the three-level atom in Sect. (3.1.3). Following

through with the derivation we arrive at the master equation for a damped harmonic oscillator

d

dt
ρ̂ =

1

i~
[Ĥa, ρ̂] +

κa
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (6.18)

where we have neglected both the effect of a thermal environment and the frequency shifts, and

κa = 2π%(∆a)|g(∆a)|2, (6.19)

is the cavity decay rate.

We can calculate the first-order correlation function, 〈â†(t)â(t + τ)〉, for the cavity by first

deriving the equation of motion for the operator expectation 〈â〉 (Ref. [28], Sect. 1.5.3),

d

dt
〈â〉 = tr

[(
d

dt
ρ̂

)
â

]
= −

(κa
2

+ i∆a

)
〈â〉, (6.20)

and then using the quantum regression procedure, whereby the equation of motion for the correla-
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tion function is
d

dt
〈â†(t)â(t+ τ)〉 = −

(κa
2

+ i∆a

)
〈â†(t)â(t+ τ)〉, (6.21)

which, in the steady state limit t→∞, has the solution

g(1)(τ) = e−(κa/2+i∆a)τ . (6.22)

Recalling the Wiener-Khintchine theorem, Eq. (5.24), the power spectrum of this cavity is the

Fourier transform of the correlation function, i.e., a Lorentzian centred on ∆a with full-width at

half-maximum κa.

6.3.2 Cascaded Open System

We consider a composite system where we have a source subsystem, the atom with Hamilto-

nian Eq. (4.6), whose output is coupled to a target subsystem, the cavity filter with Hamiltonian

Eq. (6.17), at a distance d, as illustrated in Fig. 6.10. The fluorescence of the atom is coupled

through a partially transmitting mirror into a ring cavity. If the fluorescence is resonant with the

cavity it will be able to pass through another partially transmitting mirror on the other side of the

cavity, such that the ring cavity acts as a transmission filter; incident light that is off resonance is

reflected rather than transmitted. Following the approach of Carmichael (Ref. [30], Sect. 19.2), the

total Hamiltonian is Ĥ = ĤS + ĤR + ĤSR where

ĤS = Ĥsource + Ĥtarget, (6.23a)

ĤR =
∑
j

~ωj r̂†j r̂j , (6.23b)

ĤSR = Ĥsource
SR + Ĥtarget

SR , (6.23c)

where Ĥsource = ĤA, Ĥtarget = Ĥa, and the reservoir interactions are

Ĥsource
SR = ~

√
γ
[
Σ̂Ê†(0) + H.c.

]
, (6.24a)

Ĥtarget
SR = ~

√
κa

[
âÊ†(d) + H.c.

]
, (6.24b)

where we have expressed the electric field in photon flux units as

Ê(z) ≡ −i
√

2ε0Ac

~1
2 (ωeg + ωfe)

ê · Ê(+)(z, 0). (6.25)

The two subsystems are coupled to different field operators, Ê(0) and Ê(d), which are correlated,

so it is not permissible to treat the reservoir interactions as independent. Instead we consider the

time-retarded density operator

χ̂ret ≡ Ûsource(−d/c)χ̂Û †source(−d/c), (6.26)
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Figure 6.10: Schematic of the single-filter system, where the fluorescence is emitted into the ring
cavity. It first encounters a mirror with very small transmission coefficient, mainly reflecting into
the upper detector but with a small transmission. If the fluorescence is resonant with the cavity,
at frequency ∆a, it will build up over many round trips inside the cavity and be transmitted either
through the first partially transmitting mirror, towards the upper detector, or out the side, to
the right-most detector. For exact resonance, the field directed towards the upper detector is π
out of phase with the incident field reflected from the input mirror, which results in destructive
interference and no net output towards the upper detector.

where

Ûsource(−d/c) ≡ e−
i
~(Ĥsource+ĤR+Ĥsource

SR )(−d/c). (6.27)

The Schrödinger equation for the density operator now becomes

d

dt
χ̂ret =

1

i~
[Ĥret, χ̂ret], (6.28)

where the only difference between Ĥret and Eq. (6.23) is that the interaction term is changed:

Ĥtarget
SR −→ Ûsource(d/c)Ĥ

target
SR Û †source(d/c). (6.29)

Now the electric field of the reservoir freely propagates from the atom to the target cavity, so we

find that the Hamiltonian becomes

Ĥret = Ĥc
S + ĤR + Ĥc

SR, (6.30)

where

Ĥc
S = Ĥsource + Ĥtarget +

i~
2

√
γκa

(
âΣ̂† − Σ̂â†

)
, (6.31)

and the source and target now couple to the reservoir at the same spatial location:

Ĥc
SR = ~

[(√
γΣ̂ +

√
κaâ
)
Ê†(0) + H.c.

]
. (6.32)
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We can now follow through with the familiar procedure to derive the master equation for the

reduced density operator

ρ̂ret(t) ≡ tr [χ̂ret(t)] . (6.33)

Adding in the decay of the cavity, we finally obtain the master equation for a three-level atom

cascaded with a target scanning interferometer :

d

dt
ρ̂ =

1

i~
[Ĥc, ρ̂] +

1

2

(
2Ĵac ρ̂Ĵ

a†
c − Ĵa†c Ĵac ρ̂− ρ̂Ĵa†c Ĵac

)
+
κa
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
,

(6.34)

with Hamiltonian

Ĥc = ĤA + ~∆aâ
†â+

i~
2

√
γκa

(
âΣ̂† − Σ̂â†

)
, (6.35)

where ĤA is the Hamiltonian for the driven atom, Eq. (4.6), and cascaded decay operator

Ĵac =
√
γΣ̂ +

√
κaâ. (6.36)

6.3.3 Auto-correlation

As we have established, the second-order correlation function is related to the probability of

detecting another photon at a time τ after a first detection. To clarify the situation, it can be

useful to consider the system in terms of a quantum trajectory experiment. The evolution of the

system is now governed by the Schrödinger equation with non-Hermitian Hamiltonian (Ref. [30],

p. 491)

Ĥ = ĤA + ~∆aâ
†â− i~γ

2
Σ̂†Σ̂− i~κaâ†â− i~

√
γκaâ

†Σ̂, (6.37)

where it is made clear in this Hamiltonian that the cascaded system is coupled in one direction

only. With the current system set up we expect only two types of detections. If the fluorescence is

resonant with the cavity and is not reflected at the first partially transmitting mirror, it enters the

ring cavity and can leave out the other side, with a detection corresponding to the jump operator

Ĵa =
√
κaâ; (6.38)

otherwise it passes through the input mirror again to reach the same detector as the initially

reflected fluorescence; thus, the second detection corresponds to a superposition of reflected and

transmitted fluorescence, with jump operator Eq. (6.36).

We may now think of the second-order correlation in terms of a detector going “click”. Specifi-

cally, given a detection from the transmission channel, what is the probability of another detection

occurring after a time τ . We then work from the answer to this question and define the second-order
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correlation for the filter cavity

g
(2)
Auto(τ) =

〈â†(0)â†(τ)â(τ)â(0)〉ss
〈â†â〉2ss

. (6.39)

In Sect. 6.2.2, for a weak drive field, we saw that the separate dipole operators correspond to

the transitions expected from the two steps of the cascade decay. Using the results of that section

as a reference we aim to reproduce the photon correlations (Fig. 6.6) with the filter cavity cascaded

system. In Fig. 6.11 we set the filter to be resonant with the ωeg transition. Looking at the auto-

correlation, it comes as no surprise that the light is anti-bunched. Moving the filter resonance to

match the ωfe transition (Fig. 6.12) we see that the emitted light is also anti-bunched There is,

however, one important difference in these figures and those of the dipole operators, Fig. 6.6, and

that is the lack of rapid oscillations. We have now come across the first unavoidable issue with the

filter cavity.

In order for us to resolve the fast oscillations, the cavity linewidth κa must be roughly as large

as the frequency of oscillations, which, for a low drive, is approximately the detuning from single-

photon resonance, α/2 + δ. This means that at two-photon resonance κa ≈ |α|/2. If it is much

smaller, the rapid oscillations will be averaged out – exactly what we see in Figs. 6.11 and 6.12.

The filter has a Lorentzian shape, however, which has very long tails. If we were to make κa

large enough to capture the oscillations, the cavity would contain some “contamination” of other

frequencies, no longer acting as a sufficient filter. Even for a smaller bandwidth, however, we have

seen that the filter can still resolve whether the emitted light is correlated or not.

We move on, now, to the strong driving regime where we are able to resolve the correlations

of the dressed states transitions – something we were unable to do with the dipole operators in

the previous section. It appears from the dressed state transitions shown in Fig. 5.1 that all but

one of the transitions are anti-bunched, with the single bunched transition responsible for the ωd

peak in the fluorescence spectrum of Fig. 5.9. By setting the cavity resonant to the ωd transition

in Fig. 6.13, we see that the light is indeed bunched as expected – because the |+〉 to |+〉 and

|−〉 to |−〉 transitions may be immediately followed by the same respective transition. Unlike the

rapid oscillations for the weak drive, in this case the cavity is able to resolve the more prominent

oscillations as the beat frequency is |ω−| ≈ 11.23 � |α|/2. Shifting the cavity resonance slightly

to the left, we now focus on the |−〉 to |0〉 transition with frequency ωd + ω−. We see in Fig. 6.14

that, as we already stated, the light from this transition is also anti-bunched. We see even more

pronounced antibunching when focusing on the ωeg doublet in Fig. 6.15; we see in Fig. 5.1 that

each individual transition, excluding ωd, can only occur once in a cascade decay.

Figures 6.16, 6.17, and 6.18 all show the auto-correlation for the |+〉 to |0〉 transition for three

different values of ξ. While the spectrum changes with each value, the auto-correlations indicate the

emitted light from this transition is still antibunched. This is to be expected as the dressed states

and their frequencies maintain the form shown in Fig. 5.1. We find, in fact, that the correlations

for any each value of ξ remains qualitatively the same.
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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Figure 6.11: Filtered second-order auto-correlation for the ωeg transition and a weak drive.
Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0, 60.0, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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Figure 6.12: Filtered second-order auto-correlation for the ωfe transition and a weak drive.
Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0,−60.0, 10.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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Figure 6.13: Filtered second-order auto-correlation for the centre peak of the central triplet.
Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0, 0.0, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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(b) Auto-correlation.

Figure 6.14: Filtered second-order auto-correlation for the left peak of the central triplet. Pa-
rameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0,−11.23, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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(b) Auto-correlation.

Figure 6.15: Filtered second-order auto-correlation for the ωeg doublet. Parameters are
(Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0, 73.0, 15.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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(b) Auto-correlation.

Figure 6.16: Filtered second-order auto-correlation for the ωd+ω+ transition, ξ = 0.5. Parameters
are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0, 67.42, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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(b) Auto-correlation.

Figure 6.17: Filtered second-order auto-correlation for the ωd+ω+ transition, ξ = 1.0. Parameters
are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.0, 76.9, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavity (dashed).
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(b) Auto-correlation.

Figure 6.18: Filtered second-order auto-correlation for the ωd+ω+ transition, ξ = 1.5. Parameters
are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ) = (40.0,−120.0, 0.0, 1.5, 76.9, 5.0).
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6.3.4 Analytic expression for weak drive limit

The basis states for the cascaded system can be described as a tensor product of the atomic

states and the Fock states of the cavity:

|ψ〉 = |n〉 ⊗ |i〉 = |n, i〉 , (6.40)

where n = 0, 1, 2, . . . , and i ∈ g, e, f . In the weak drive limit, the system state is dominated by the

ground state |g, 0〉, and, following the method of Carmichael (Ref. [30], Sect. 16.2), we may expand

the state vector in the two-quanta truncation,

|ψ̃〉 = |0, g〉+ α̃(t) |0, e〉+ β̃(t) |0, f〉+ γ̃(t) |1, g〉+ δ̃(t) |1, e〉+ η̃(t) |2, g〉 , (6.41)

and solve the Schrödinger equation
d

dt
|ψ̃〉 =

1

i~
Ĥ |ψ̃〉 , (6.42)

with Hamiltonian Eq. (6.37). Thus, since quantum jumps are extremely rare when the drive field

is weak, we assume the atom evolves freely with the Hamiltonian used in trajectory theory. From

the state expansion, Eq. (6.41), we obtain the equations of motion in the two-quanta truncation

with weak driving :

˙̃α =
[
−γ

2
+ i
(α

2
+ δ
)]
α̃(t)− iΩ

2
, (6.43a)

˙̃
β = −iξΩ

2
α̃(t) +

(
−γ

2
ξ2 + 2iδ

)
β̃(t), (6.43b)

˙̃γ = −√γκaα̃(t)− (κa + i∆a) γ̃(t), (6.43c)

˙̃
δ = −√γκaξβ̃(t)− iΩ

2
γ̃(t) +

[
−
(γ

2
+ κa

)
+ i
(α

2
+ δ −∆a

)]
δ̃(t), (6.43d)

˙̃η = −
√

2γκaδ̃(t)− 2 (κa + i∆a) η̃(t). (6.43e)

In each of these equations we retain terms to the dominant power of Ω only. Then, making the

following substitutions:

ye = −γ
2

+ i
(α

2
+ δ
)
, (6.44a)

yf = −γ
2
ξ2 + 2iδ, (6.44b)

N = κa + i∆a, (6.44c)

we solve for the steady state coefficients

α̃ss = i
Ω

2

1

ye
, (6.45a)

β̃ss = −ξ
(

Ω

2

)2 1

yeyf
, (6.45b)
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γ̃ss = −i√γκa
Ω

2

1

yeN
, (6.45c)

δ̃ss =
1

yeyfN

√
γκa

ye −N

(
Ω

2

)2 (
ye − ξ2N

)
, (6.45d)

η̃ss = − 1√
2yeyfN2

γκa
ye −N

(
Ω

2

)2 (
ye − ξ2N

)
. (6.45e)

The second-order correlation, Eq. (6.39), is now recast in the form

g
(2)
Auto(τ) =

〈ψ̃(τ)|â†â|ψ̃(τ)〉
〈ψ̃ss|â†â|ψ̃ss〉

, (6.46)

where |ψ̃〉ss is the state vector in the steady state, and |ψ̃(τ)〉 is the time-dependent solution to

Eq. (6.43) with initial condition

|ψ̃(τ = 0)〉 =
â |ψ̃ss〉√
〈ψ̃ss|â†â|ψ̃ss〉

=
1√
n̄ss

(
γ̃ss |0, g〉+ δ̃ss |0, e〉+

√
2η̃ss |1, g〉

)
, (6.47)

where, to dominant orders of Ω, the steady state photon number is

n̄ss = |γ̃ss|2 + |δ̃ss|2 + 2|η̃ss|2 ≈ |γ̃ss|2 = γκa

(
Ω

2

)2

|Nye|−2. (6.48)

Finally, adopting the single-quantum truncation

|ψ̃(τ)〉 = |0, g〉+ α̃(τ) |0, e〉+ γ̃(τ) |1, g〉 , (6.49)

the second-order correlation simplifies as

g
(2)
Auto(τ) =

|γ̃(τ)|2
|γ̃ss|2

, (6.50)

with

γ̃(τ) = −iΩ
2

√
γκa

yeN
−
√
γκa

ye +N
C1e

yeτ + C2e
−Nτ , (6.51)

where

C1 =
δ̃ss
|γ̃ss|

− α̃ss, (6.52a)

C2 =

√
2η̃ss
|γ̃ss|

+

√
γκa

N
α̃ss +

√
γκa

ye +N
C1 (6.52b)
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are the integration constants obtained by solving for α̃(t) and γ̃(t). Substituting Eqs. (6.48) and

(6.51) into Eq. (6.50), we finally obtain an analytic expression for the filtered second-order correla-

tion in the weak-driving limit :

g
(2)
Auto(τ) =

∣∣∣∣1 +
N

α̃ss (ye +N)
C1e

yeτ − N√
γκaα̃ss

C2e
−Nτ

∣∣∣∣2 . (6.53)

From this equation we are able to confirm many of the observations made thus far. First, as

expected, by taking κa to infinity we recover the unfiltered correlation which oscillates at a frequency

− (α/2− δ).

6.4 Filtered Cross-Correlations

In this section we take the cascaded filtering system one step further by introducing a second

filtering cavity. We can then tune the two cavities to different transitions allowing us to cross-

correlate the photons emitted from each.

6.4.1 Two-filter composite system

For the single-cavity system we coupled the entirety of the fluorescence into the cavity. With

the two-filter system we couple, on average, half of the fluorescence into each cavity. This can be

done by introducing a partially transmitting mirror which splits the fluorescence, or, as illustrated

in Fig. 6.19, by splitting the fluorescence into two opposite decay channels.

Adding in the Hamiltonian components for the second filter, cavity b, the Hamiltonian for this

new composite system has a similar form to Eq. (6.35),

Ĥc = ĤA + ~∆aâ
†â+ ~∆bb̂

†b̂+
i~
2

√
γκa
2

(
âΣ̂† − Σ̂â†

)
+
i~
2

√
γκb
2

(
b̂Σ̂† − Σ̂b̂†

)
, (6.54)

with a similar master equation to Eq. (6.34),

d

dt
ρ̂ =

1

i~
[Ĥc, ρ̂] +

1

2

(
2Ĵac ρ̂Ĵ

a†
c − Ĵa†c Ĵac ρ̂− ρ̂Ĵa†c Ĵac

)
+
κa
2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
+

1

2

(
2Ĵbc ρ̂Ĵ

b†
c − Ĵb†c Ĵbc ρ̂− ρ̂Ĵb†c Ĵbc

)
+
κb
2

(
2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂

)
,

(6.55)

and cascade decay operators

Ĵac =

√
γ

2
Σ̂ +
√
κaâ, (6.56a)

Ĵbc =

√
γ

2
Σ̂ +
√
κbb̂. (6.56b)

Unsurprisingly, the non-Hermitian Hamiltonian governing the free evolution of the two-filter system
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Figure 6.19: This system is almost identical to the single-filter system, Fig. 6.10, but with a
second cavity to the left. Here the resonance is emitted into each cavity at a rate γ/2.

also has a similar form to Eq. (6.37),

Ĥ = ĤA + ~∆aâ
†â+ ~∆bb̂

†b̂− i~γ
2

Σ̂†Σ̂− i~κaâ†â− i~κbb̂†b̂

− i~
√
γκa
2

Σ̂â† − i~
√
γκb
2

Σ̂b̂†,
(6.57)

with jump operators Eqs. (6.38) and (6.56), and in addition

Ĵb =
√
κbb̂. (6.58)

6.4.2 Cross-correlations

In order to determine the cross-correlation of the transitions, we set a condition on the detectors,

just as we did in section 6.2.3. When the cavities are resonant with different transition, we aim

to correlate the light from cavity a with the light from cavity b. We therefore aim to calculate

the probability of detecting a transmission from cavity b at a time τ after detecting a transmission

from cavity a. We thus define the filtered second-order cross-correlation for the two-filter system:

g(2)(τ) =
〈â†)(0)b̂†(τ)b̂(τ)â(0)〉ss

〈â†â〉ss〈b̂†b̂〉ss
. (6.59)

When we considered the separate dipole operators we saw, in Fig. 6.8, perfect examples of

correlated and uncorrelated light when the drive field was weak. Setting one filter resonant with

the |f〉 to |e〉 and the other on the |e〉 to |g〉 transition we see similar results – as we would expect.

When conditioned on an |e〉 to |g〉 emission, we find that the photon detections are mostly anti-

correlated, as demonstrated in Fig. 6.20. The correlation is not, however, as “neat” as for the

dipole operators. Due to the cavities having a finite bandwidth, there will inevitably be a delay in

their response, which is the cause of the large initial value and sudden drop. If we were to increase
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the bandwidth of cavity b we would see this response time decrease, causing the initial peak to

decay even faster. When we “swap” the cavities around, with the correlation now condition on an

|f〉 to |g〉 emission, we see, in Fig. 6.21, that the emissions are strongly correlated. While these

results come as no surprise, we can now be confident that the filtered-cross correlations give us

reasonable results.

We now increase the drive strength so that we can investigate the correlations of the dressed

state transitions. Focusing now on the single-photon doublets, we would still expect to see a

photon from the ωeg doublet after a photon from the ωfe doublet is detected. From the dressed

state picture, Fig. 5.1, we see that the two transitions that contribute to the ωfe doublet, |0〉 to |+〉
and |−〉 to |+〉, may be immediately followed by either a |+〉 to |0〉 or |+〉 to |−〉 transition. We

see, in Fig. 6.22, that this is precisely what occurs, as there is a very strong correlation between the

two. Swapping the filters around, however, does not give us the strong anti-correlation we saw for

a weak drive. Figure 6.23 shows the cross-correlation oscillating at a frequency ω−/2π, the same

frequency we have seen appear previously. Just as with the previous cases, the drive field is now

strong enough to constantly excite the atom into the state |f〉. The individual transitions in the

doublets, however, are strongly anti-correlated, as shown in Fig. 6.24 . The two transitions these

peaks results from both start from the dressed state |+〉 and therefore cannot occur immediately

after the other.

We have already seen, in Fig. 6.13, that the central peak is strongly self-correlated, due to the

relatively high number of possible dressed state transitions of frequency ωd. While the central peak

may have multiple possible transitions, its two nearest side-peaks only have one possible transition

each; from the dressed state ladder, we see one of these transitions directly follows the other. The

cascaded decay of |0〉 to |−〉 followed by |−〉 to |0〉 suggests a strong cross-correlation, provided a

|0〉 to |−〉 transition is detected first. Tuning the two cavities onto these transitions we see that

this is also the case, as shown in Fig. 6.25.

As with all the two-filter correlations, Fig. 6.25 has an initial artefact that arises due to the

response time of the cavity. The issues that came from employing a single Lorentzian filter in the

previous section are also present here. There is a limit as to how close the two transition frequencies

we investigate can be as we need a linewidth large enough to resolve the peak, but not so large as

to include both frequencies in the same filter.
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.20: Filtered second-order cross-correlation for a weak drive: ωeg con-
ditioned on ωfe. Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) =
(5.0,−120.0, 0.0, 1.0, 60.0, 5.0,−60.0, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.21: Filtered second-order cross-correlation for a weak drive: ωfe con-
ditioned on ωeg. Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) =
(5.0,−120.0, 0.0, 1.0,−60.0, 5.0, 60.0, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.22: Filtered second-order cross-correlation for emission on the ωeg doublet conditioned
on emission on the ωfe doublet. Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) =
(40.0,−120.0, 0.0, 1.0,−73.0, 15.0, 73.0, 15.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.23: Filtered second-order cross-correlation for emission on the ωfe doublet conditioned
on emission on the ωeg doublet. Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) =
(40.0,−120.0, 0.0, 1.0, 73.0, 15.0,−73.0, 15.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.24: Filtered second-order cross-correlation for ωd + (ω+ − ω−) condi-
tioned on ωd + ω+. Parameters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) =
(40.0,−120.0, 0.0, 1.0, 71.23, 5.0, 82.46, 5.0).
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(a) Incoherent fluorescence spectrum (solid) with filter cavities a (dashed) and b (dotted).
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Figure 6.25: Filtered second-order cross-correlation for ωd−ω+ conditioned on ωd+ω+. Parame-
ters are (Ω/γ, α/γ, δ/γ, ξ,∆a/γ, κa/γ,∆b/γ, κb/γ) = (40.0,−120.0, 0.0, 1.0, 11.23, 5.0,−11.23, 5.0).
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7 Conclusion

Let us begin with a summary of the topics covered in this thesis. At first, we studied the

interaction of a three-level atom with a quantised radiation field, adopting the dipole and rotating

wave approximations. We then treated the system as an open system, allowing for an energy loss

mechanism – spontaneous emission. We approached the open system with two different techniques,

namely the Lindblad master equation and quantum trajectory theory.

We began the numerical results with a survey of the steady states of the atom. We derived a

time-independent expression of the driven atom in a frame rotating at the drive frequency. This

allowed us to introduce two very important parameters: the drive detuning from two-photon reso-

nance, and the anharmonicity of the two dipoles. We briefly adopted a model where the intermediate

level of the atom was adiabatically eliminated from the driving process, but remained for the decay.

With this model we were able to derive analytic expressions for the steady state density operator.

Following this we derived expressions for the dressed states and their respective frequencies for

the case of two-photon resonance. For a weak drive field the dressed states resembled the bare states,

with only two transitions for the cascaded decay. When the drive strength increased, however, the

number of possible transitions increased to twelve, with seven distinct transition frequencies. We

saw this effect when we computed the incoherent fluorescence spectrum of the atom, where, for

an increasing drive strength, the two single-photon transition peaks split into a doublet, and a

Mollow-like triplet centred on the drive frequency emerged.

In the final chapter we investigated the photon-photon correlations of the fluorescence by com-

puting the second-order correlation function. To start with we looked at the correlation of the total

dipole operator and found that, for a weak drive, the emitted photons were super bunched; due

to the cascaded decay, after detecting the first photon from the |f〉 to |e〉 transition, we expect,

approximately within an atomic lifetime, to detect another from the |e〉 to |g〉 transition. If the

drive is very weak the time between detection pairs increases, pushing the initial correlation value

higher as it becomes clearer that the photons are bunched. For a higher drive, however, the photons

are slightly antibunched and the correlations oscillate at the dressed frequency ω−.

We split the total dipole operator into its two separate components, one for each dipole, and

computed the auto- and cross-correlations. For a weak drive, the dipole operators directly cor-

respond to the two single-photon transitions. We see this in the auto-correlation as the light is

perfectly anitbunched, and the cross-correlations show a strong correlation for detecting a photon

from the |e〉 to |g〉 transition directly after detecting one from the |f〉 to |e〉 transition. We know,

however, that we can compose the bare states as a combination of dressed states, where for a

strong drive, these dressed states split far from eachother. Thus the separate dipole operators are

a combination of several different dressed state transitions.
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In order to correlate individual dressed transitions, we approached the system as a cascaded

open system, where we coupled the fluorescence into a filter cavity; the cavity acted as a tunable

Lorentzian filter with a finite linewidth. We found that the photons corresponding to the central

peak of the spectrum, centred on the drive frequency, were bunched. This was to be expected as

our dressed state picture predicted two pairs of cascade emissions, all resulting in a frequency ωd.

The other transitions, however, were all antibunched.

Finally, we added a second filter cavity so we could cross-correlate photons from different tran-

sitions, further confirming our understanding of decay via dressed state transitions. There was

a strong correlation between the single-photon peaks, even when the peaks split into respective

doublets.

The fluorescence spectrum of the driven atom that we calculated closely match those of Gas-

parinetti et al. (Ref. [12]) as we see the emergence of a central triplet and two doublets that are

Stark shifted from the single-photon transition. Our results for the second-order correlations, how-

ever, only qualitatively match. The bunching of the ωd transition and the antibunching of the other

transitions were evident, however our results show oscillations in the correlations whereas Ref. [12]

does not. Our method of filtering the fluorescence goes beyond the secular approximation used for

their results. It is also important to note that experimentally, the fluorescence of their artificial

atom was digitally filtered, which we would expect to give different results to our cascaded system.

While we have conducted a numerical survey over various different parameters, the parameter

space is very large. There is still room to explore the effect that driving off two-photon resonance

has on the correlations. One other avenue for future extension is in determining another method

of frequency filtering. The Lorentzian filter proved to be sufficient in our computations, however,

a Lorentzian has long reaching tails. A more precise theoretical filter, such as a bandpass filter,

would be a fine addition to the quantum optics computational toolbox.
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A Simulation Code

Most of the code use to generate the results was written in Fortran 90. The code can be found at

the Github repository: https://github.com/jnga773/Two_Photon_Resonance_Ladder_System.

The simulation code is based on the Lindblad master equation, solving for the density operator

ρ̂(t) using the Runge-Kutta 4th technique. For the power spectrum results we numerically solve the

differential equation and the quantum regression theorem, Eq. (3.37), to solve for the first-order

correlation function. The power spectrum is then calculated using a Fast Fourier Transform (FFT)

technique.

The second-order correlation function was calculated using two methods: solving the Lindblad

master equation as before, and using quantum trajectory theory to simulate the detectors of a

photon counting experiment.

https://github.com/jnga773/Two_Photon_Resonance_Ladder_System
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