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STABLE Q-SWITCHED LASERS

• Optical frequency combs and optical clocks need stability

• How do they return to equilibrium when perturbed?

• Q-switched lasers can be optical analogues to neurons

• Optical neural networks
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THE YAMADA MODEL

ሶ𝐺 = 𝛾 𝐴 − 𝐺 − 𝐺 𝐼
ሶ𝑄 = 𝛾 𝐵 − 𝑄 − 𝑎 𝑄 𝐼
ሶ𝐼 = 𝐺 − 𝑄 − 1 𝐼

• 𝐺 – Gain

• 𝑄 – Absorption

• 𝐼 – Intensity 

Parameters

• 𝛾 – Photon loss rate

• 𝐴 – Pump current to gain

• 𝐵 – Absorption coefficient

• 𝑎 – Relative absorption vs. gain

Taken from J. L. A. Dubbeldam and B. Krauskopf “Self-pulsations of lasers with saturable absorber: Dynamics

and bifurcations”, Opt. Commun., 159 (4-6), 325 (1999).
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THE YAMADA MODEL: BIFURCATION DIAGRAM

• Different dynamics split by bifurcations:

• Hopf, homoclinic, saddle

• Objects in phase space

• o – Stable equilibrium (‘off state’)

• p – Saddle with two unstable and one 

stable eigenvalues

• q – Spiral source

• Attracting periodic orbit

• Saddle periodic orbit
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Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick “The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for

Non Identical Decay Times of Gain and Absorber”, Int. J. Bifurc. Chaos Appl. Sci. Eng., 30 (14) (2020).
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THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT
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𝐴 = 7.3757
𝛾 = 0.0354
𝐵 = 5.8
𝑎 = 1.8



THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

𝐴 = 7.3757
𝛾 = 0.0354
𝐵 = 5.8
𝑎 = 1.8

• Attracting periodic orbit Γ (green curve)

• Unstable stationary point / spiral source 𝑞 

(black diamond)

• One-dimensional stable manifold of the 

stationary point 𝑊𝑠 𝑞  (blue curve)
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PHASE-RESETTING
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• Induced perturbation

• 𝐴p – amplitude 

• 𝑑p = cos 𝜃p , sin 𝜃p  – direction

• 𝜃old – phase perturbation is 

applied

• When does the perturbed segment 

return?

• 𝜃new – phase perturbation 

returns

• Boundary value problem (BVP)

• Numerical continuation in AUTO 

and COCO
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PHASE-RESETTING: YAMADA MODEL
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• Perturbations cause a phase shift (‘lag’) in intensity pulses.

• Phase difference ≈ 𝑇Γ 𝜃new

• Relationship between 𝐴p, 𝜃old, and 𝜃new?
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• Perturbations cause a phase shift (‘lag’) in intensity pulses.

• Phase difference ≈ 𝜃old − 𝜃new

• Relationship between 𝐴p, 𝜃old, and 𝜃new?



PHASE-TRANSITION CURVES (PTC)
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• Positive-G perturbations

• 𝑑p = 0, 0, 1

• Fundamental domain (green)

• Represents full range of phases in the periodic orbit

• Weak perturbations “reset” to the same phase

• 𝜃p ≈ 𝜃p 

• Stronger perturbations = ”difference” 
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PHASE-TRANSITION CURVES (PTC)
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PHASE-TRANSITION CURVES (PTC)



INTERSECTION WITH THE STABLE MANIFOLD
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• Stable manifold of 𝑞 intersects orbit 𝑊𝑠 𝑞

• Initial point on stable manifold evolves towards 𝑞 

instead of “resetting”.

• Occurs at 𝜃old ≈ 0.35 for 𝐴𝑝 ≈ 0.55.

• Each point along orbit will have some 

perturbation pushing it into 𝑊𝑠 𝑞

• Combination of 𝐴p, 𝑑p, and 𝜃old.

• Returned phase 𝜃new grows until undefined



PTC SURFACE: G-PERTURBATION
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PTC “HOLE” – SLOW DYNAMICS
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𝜃old

𝜃new

𝐴p

• Weak perturbations reset 

“quickly

• Strong perturbations “far 

away” from 𝑊𝑠 𝑞  reset 

“quickly”

• Perturbations close to 

𝑊𝑠 𝑞  spiral for a long time

• Longer than allowed 

computation 

𝜃old = 0.3, 𝐴p = 0.1
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ISOCHRONS

• Isochrons are the set of all points which reset 

to the same phase

• 𝜃old = 𝜃new

• Isochron associated with each point along 

the periodic orbit

• All points in phase space have a unique 

phase depending on the isochron they lie on
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TWO-DIMENSIONAL ISOCHRON

• Yamada model is a three-

dimensional system

• Each isochron is then a two-

dimensional object

• “Carpet roll” around the stable 

manifold 𝑊 𝑠 𝑞

• This isochron is for the head 

point 𝛾0

• The ”first” point of the periodic orbit

• As with a 2D model, there are 

isochrons for each point along 

the periodic orbit



CONCLUSIONS
• Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations

• Discontinuities in PTC when perturbation approaches stable manifold of spiral source

• Can technically consider perturbation in any “direction”. 
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