PHASE-RESETTING IN THE YAMADA MODEL OF A
Q-SWITCHED LASER

PHASE RESPONSE FROM AN INDUCED PERTURBATION

JACOB NGAHA, NEIL G. R. BRODERICK, AND BERND KRAUSKOPF

NZMS/AMS/AUSTMS JOINT MEETING
10™ DECEMBER, 2024

SYYs] UNIVERSITY OF
Te WHAI Ao UNIVERSITY OF
Dobb-WALLS CENTRE Waipapa Taumata Ra

NEW ZEALAND

for Photonic and Quantum Technologies



STABLE Q-SWITCHED LASERS

. Journal of the
Optical Society B

of America OPTICAL PHYSICS

Excitability in an all-fiber laser with a saturable
absorber section

RoBERT OTUPIRI,"* ® BRUNO GARBIN,? NEIL G. R. BRODERICK,' AND BERND KRAUSKOPF3*

- Optical frequency combs and optical clocks need stability All optical Q-switched laser
based spiking neuron

crer Keshia Mekemeza-Ona, Baptiste Routier and
How do they return to equilibrium when perturbed? Benoft Charbonnier*

Université Grenoble-Alpes, CEA, Leti, Grenoble, France

* (Q-switched lasers can be optical analogues to neurons

*  Optical neural networks



THE YAMADA MODEL
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G - Gain
(Q - Absorption

I - Intensity

Parameters

y — Photon loss rate
A - Pump current to gain
B - Absorption coefficient

a - Relative absorption vs. gain
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Taken from J. L. A. Dubbeldam and B. Krauskopf “Self-pulsations of lasers with saturable absorber: Dynamics
and bifurcations”, Opt. Commun., 159 (4-6), 325 (1999).



THE YAMADA MODEL: BIFURCATION DIAGRAM
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« Different dynamics split by bifurcations: I
- Hopf, homoclinic, saddle . .

T BI
* Objects in phase space L 4
* 0 - Stable equilibrium (‘off state’) II\3\NH D
H 5

* p - Saddle with two unstable and one
stable eigenvalues SN 2

* q - Spiral source
« Attracting periodic orbit
- Saddle periodic orbit

Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick “The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for
Non Identical Decay Times of Gain and Absorber”, Int. J. Bifurc. Chaos Appl. Sci. Eng., 30 (14) (2020).
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THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT
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THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT
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* Attracting periodic orbit I" (green curve) 15
* Unstable stationary point / spiral source q 10
(black diamond)
*  One-dimensional stable manifold of the d
stationary point WS(q) (blue curve)
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PHASE-RESETTING
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PHASE-RESETTING

Induced perturbation

A, - amplitude
d, = (cos8,,sin@,) - direction

8,14 — phase perturbation is
applied
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PHASE-RESETTING

* Induced perturbation
* A, - amplitude
. dp = (cos 9p,sin Hp) - direction

* 0,4 - phase perturbation is
applied

* When does the perturbed segment
return?

O,ew — Phase perturbation
returns




PHASE-RESETTING

A Continuation Approach to Computing
+ Induced perturbation Phase Resetting Curves

* A, - amplitude
Peter Langfield!2, Bernd Krauskopf?, and Hinke M. Osinga3(®9
. dp = (cos 9p,sin Hp) - direction

* Bo1q - phase perturbation is Phase response to arbitrary perturbations:
applied (GGeometric insights and resetting surfaces

Kyoung H. Lee!, Neil G. R. Broderick?, Bernd Krauskopf' and Hinke M. Osinga'

* When does the perturbed segment

SIAM J. APPLIED DYNAMICAL SYSTEMS 2015 Society for Industrial and Applied Mathematics
return? Vol. 14, No. 3, pp. 1418-1453 ©

O,ew — Phase perturbation

returns Forward-Time and Backward-Time Isochrons and Their Interactions®

Peter Langfield?, Bernd Krauskopft, and Hinke M. Osingaf

° BOU nd a ry va I ue p I’Ob Iem (BV P) ESHEJN?ELLEPD ]?ZEWQI%L SYSTEMS {C) 2010 Society for Industrial and Applied Mathematics

*  Numerical continuation in AUTO ) . .
Continuation-based Computation of Global Isochrons®
and COCO

Hinke M. Osingat and Jeff Moehlis?



PHASE-RESETTING: YAMADA MODEL
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* Perturbations cause a phase shift (‘lag’) in intensity pulses.

 Phase difference = Tr Opew

* Relationship between Ap, 0514, and Opew?

LU




PHASE-RESETTING: YAMADA MODEL
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* Perturbations cause a phase shift (‘lag’) in intensity pulses.

* Phase difference = 6,14 — Opew

* Relationship between Ap, 0514, and Opew?
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PHASE-TRANSITION CURVES (PTC)
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PHASE-TRANSITION CURVES (PTC)

Positive-G perturbations

d, = (0,0,1)

Fundamental domain (green)

Represents full range of phases in the periodic orbit

Weak perturbations “reset” to the same phase

bp = 0y



PHASE-TRANSITION CURVES (PTC)

Positive-G perturbations

d, = (0,0,1)

Fundamental domain (green)

Represents full range of phases in the periodic orbit

Weak perturbations “reset” to the same phase

szep

Stronger perturbations = "difference”



PHAS

E-TRANSITION CURVES (PTC)
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PHASE-TRANSITION CURVES (PTC)
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PHASE-TRANSITION CURVES (PTC)
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INTERSECTION WITH THE STABLE MANIFOLD

Stable manifold of g intersects orbit W5(q)

Initial point on stable manifold evolves towards g
instead of “resetting”.

Occurs at 8,4 = 0.35 for A, = 0.55.

Each point along orbit will have some
perturbation pushing it into W5(q)

Combination of Ay, dp, and 64

Returned phase 6, grows until undefined
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PTC SURFACE: G-PERTURBATION
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PTC SURFACE: G-PERTURBATION
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Weak perturbations reset
“quickly
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PTC “HOLE” - SLOW DYNAMICS
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e Strong perturbations “far
away” from W5(q) reset
“quickly”




2

D
B
9]
S

S F

2

1.5

0.5

PTC “HO

LE” - SLOW DYNAMICS

20

15+

10 +

Hold = 05, Ap = 0.3

Weak perturbations reset
“quickly

Strong perturbations “far
away” from W5(q) reset
“quickly”

Perturbations close to
W$(q) spiral for a long time

Longer than allowed
computation ®
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PTC “HOLE” - SLOW DYNAMICS
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ISOCHRONS

* Isochrons are the set of all points which reset

1.5 T T T T T T T T T

to the same phase

Bo1d = Onew

* Isochron associated with each point along o
the periodic orbit

* All points in phase space have a unique
phase depending on the isochron they lie on
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TWO-DIMENSIONAL ISOCHRON

*  Yamada model is a three-
dimensional system

. Each isochron is then a two-
dimensional object

*  “Carpet roll” around the stable
manifold W5 (q)

* This isochron is for the head
point y,

*  The "first” point of the periodic orbit

* As with a 2D model, there are
isochrons for each point along
the periodic orbit




CONCLUSIONS

. Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations
. Discontinuities in PTC when perturbation approaches stable manifold of spiral source

. Can technically consider perturbation in any “direction”.
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