PHASE-RESETTING IN THE YAMADA MODEL OF A Q-SWITCHING LASER

PHASE RESPONSE FROM AN INDUCED PERTURBATION

JACOB NGAHA, NEIL G. R. BRODERICK, AND BERND KRAUSKOPF

STABLE Q-SWITCHING LASERS

- Optical frequency combs and optical clocks need stability
- How do they return to equilibrium when perturbed?
- Q-switching lasers can be optical analogues to neurons
 - Optical neural networks

Excitability in an all-fiber laser with a saturable absorber section

ROBERT OTUPIRI,1,* D BRUNO GARBIN,2 NEIL G. R. BRODERICK,1 AND BERND KRAUSKOPF3,4 D

All optical Q-switched laser based spiking neuron

Keshia Mekemeza-Ona, Baptiste Routier and Benoît Charbonnier*

Université Grenoble-Alpes, CEA, Leti, Grenoble, France

THE YAMADA MODEL

$$\dot{G} = \gamma (A - G - G I)$$

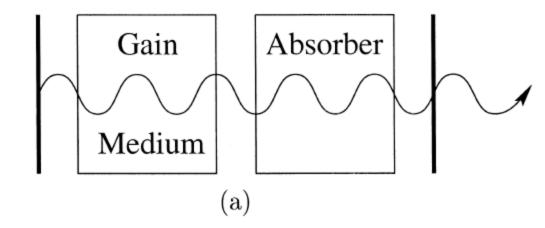
$$\dot{Q} = \gamma (B - Q - a Q I)$$

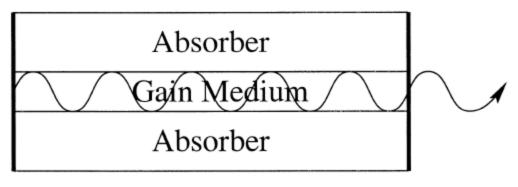
$$\dot{I} = (1 - G - Q) I$$

- *G* Gain
- *Q* Absorption
- I Intensity

Parameters

- γ Photon loss rate
- A Pump current to gain
- B Absorption coefficient
- a Relative absorption vs. gain

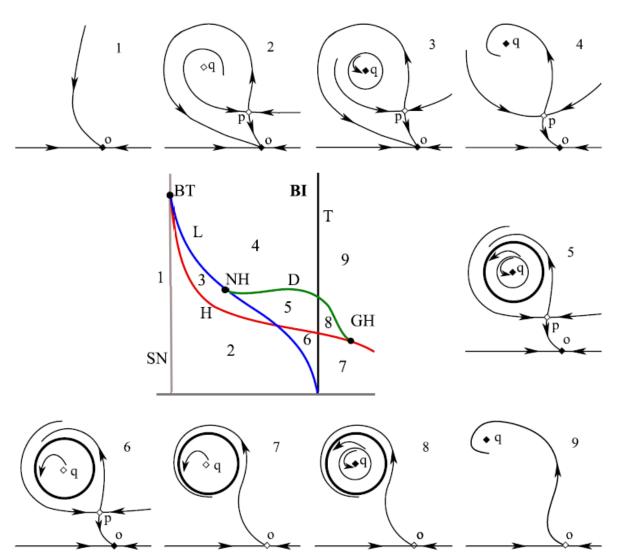




Taken from J. L. A. Dubbeldam and B. Krauskopf "Self-pulsations of lasers with saturable absorber: Dynamics and bifurcations", Opt. Commun., **159** (4-6), 325 (1999).

THE YAMADA MODEL: BIFURCATION DIAGRAM

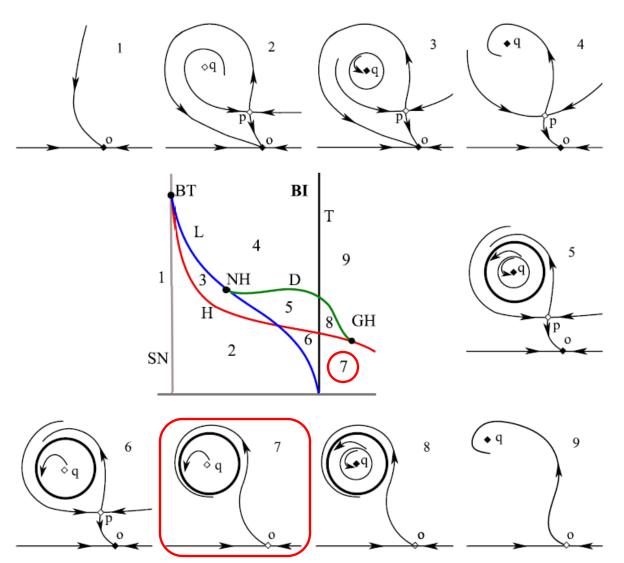
- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - p Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit



Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., **30** (14) (2020).

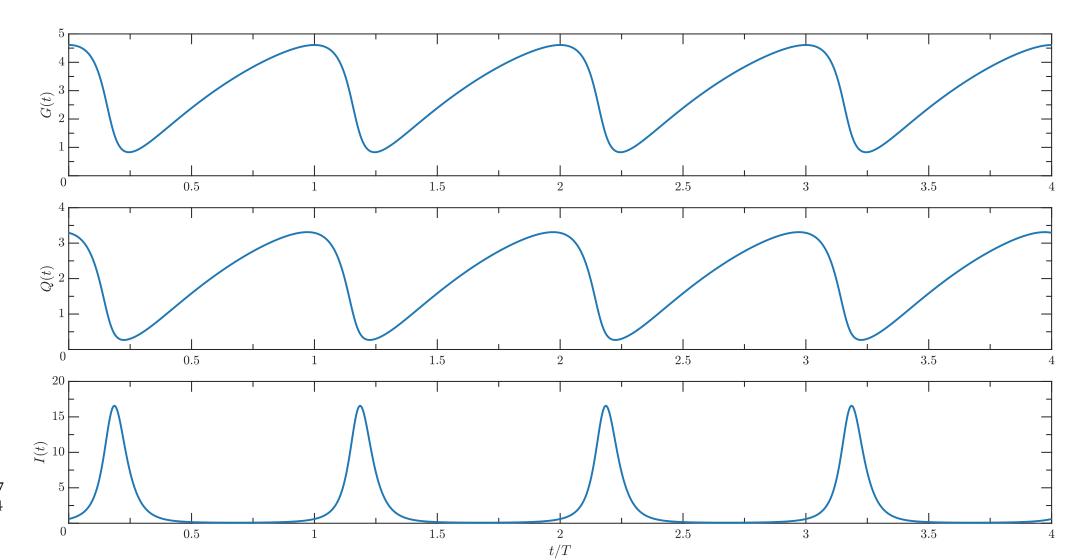
THE YAMADA MODEL: BIFURCATION DIAGRAM

- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - p Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit



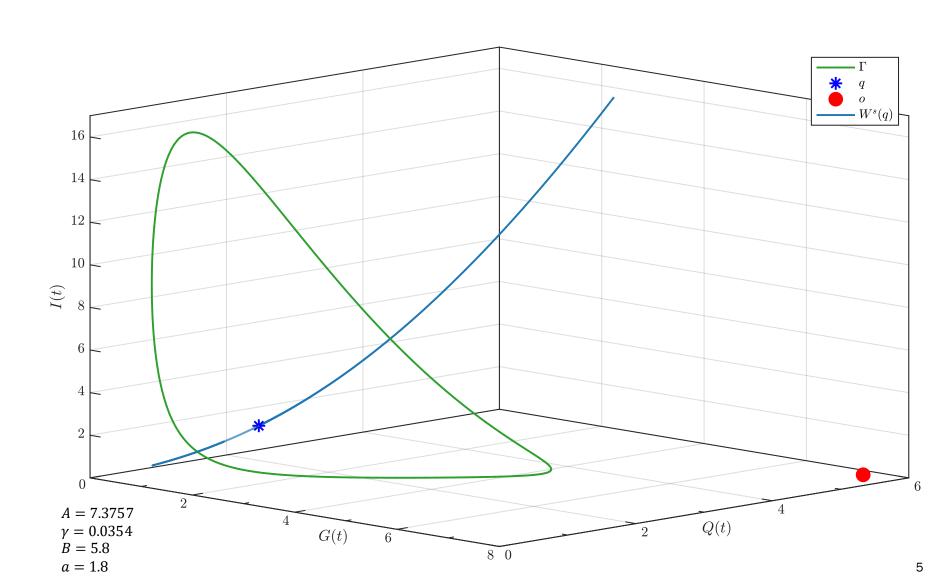
Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., **30** (14) (2020).

THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

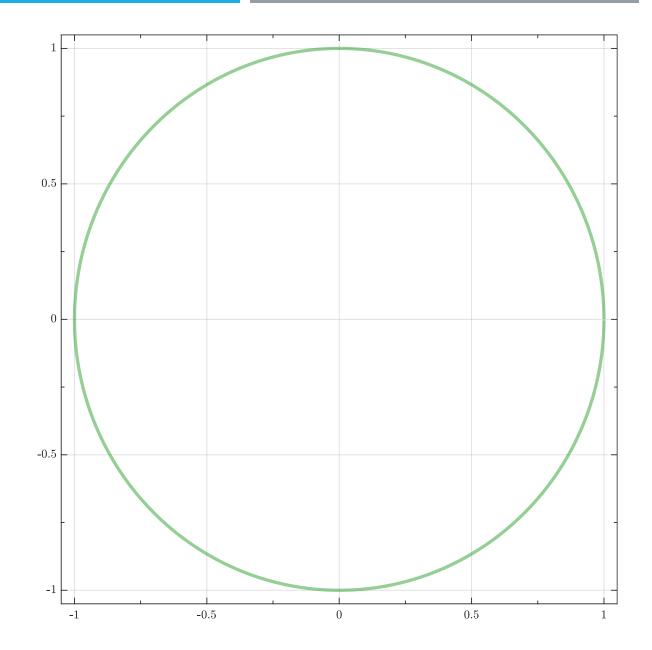


THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

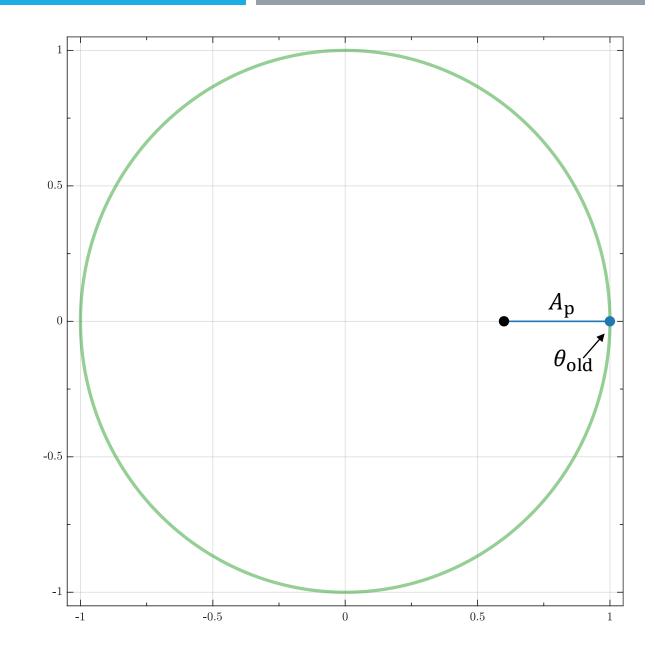
- Attracting periodic orbit (green)
- "Off" state (red circle)
- Saddle (blue star)
 - 1-D stable manifold (blue)



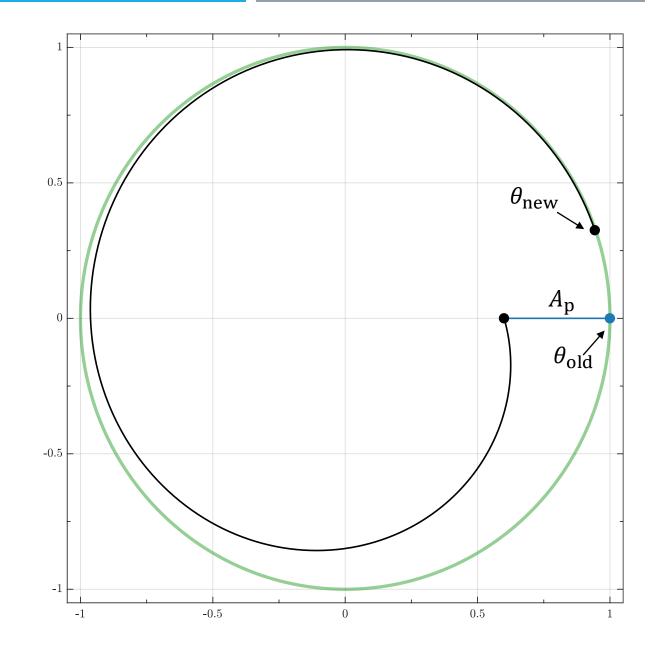
- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p})$ direction
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO



- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO



- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO



- Induced perturbation
 - A_p amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p} \, , \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{
 m old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{
 m new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO and COCO

A Continuation Approach to Computing Phase Resetting Curves

Peter Langfield^{1,2}, Bernd Krauskopf³, and Hinke M. Osinga^{3(⊠)}

Phase response to arbitrary perturbations: Geometric insights and resetting surfaces

Kyoung H. Lee¹, Neil G. R. Broderick², Bernd Krauskopf¹ and Hinke M. Osinga¹

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 14, No. 3, pp. 1418–1453 © 2015 Society for Industrial and Applied Mathematics

Forward-Time and Backward-Time Isochrons and Their Interactions*

Peter Langfield[†], Bernd Krauskopf[†], and Hinke M. Osinga[†]

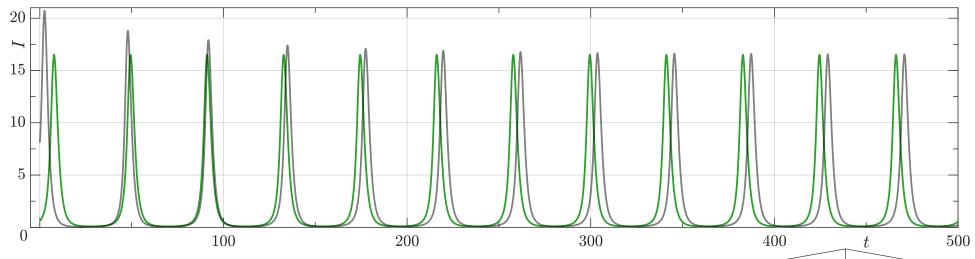
SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 9, No. 4, pp. 1201–1228

© 2010 Society for Industrial and Applied Mathematics

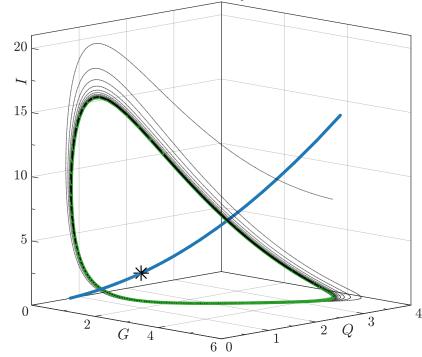
Continuation-based Computation of Global Isochrons*

Hinke M. Osinga[†] and Jeff Moehlis[‡]

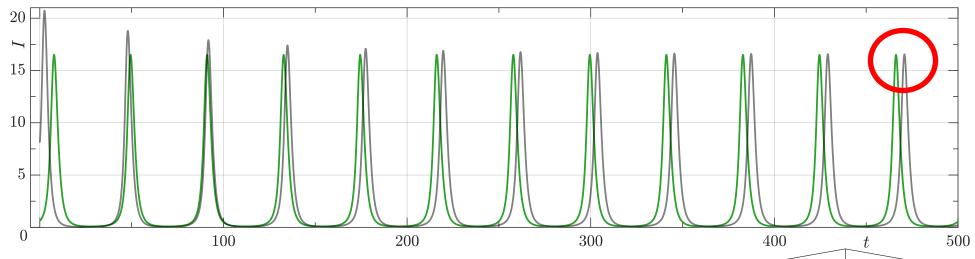
PHASE-RESETTING: YAMADA MODEL



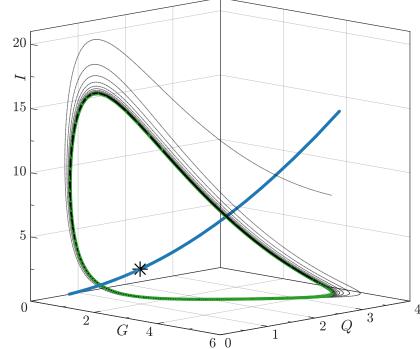
- Perturbations cause a phase shift ('lag') in intensity pulses.
- Phase difference $\approx \theta_{
 m old} \theta_{
 m new}$
- Relationship between $A_{\rm p}$, $\theta_{\rm old}$, and $\theta_{\rm new}$?

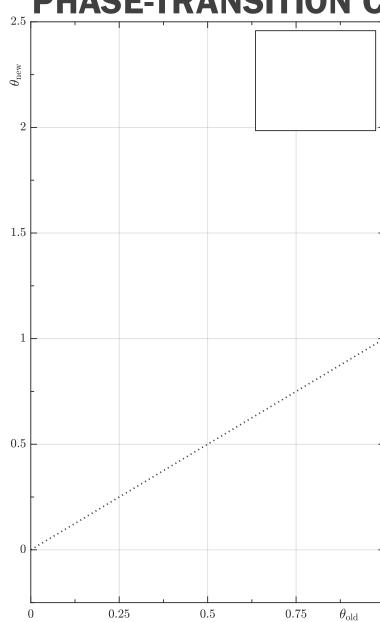


PHASE-RESETTING: YAMADA MODEL

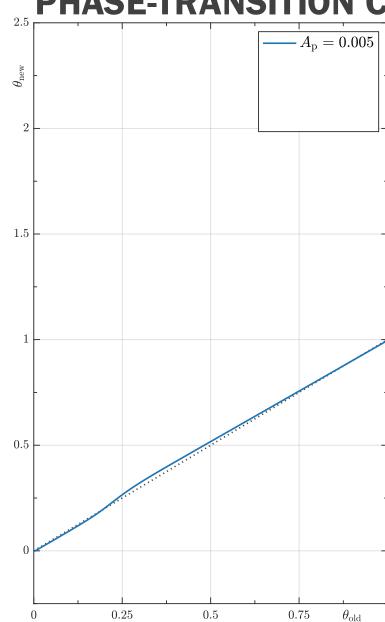


- Perturbations cause a phase shift ('lag') in intensity pulses.
- Phase difference $\approx \theta_{\rm old} \theta_{\rm new}$
- Relationship between $A_{\rm p}$, $\theta_{\rm old}$, and $\theta_{\rm new}$?

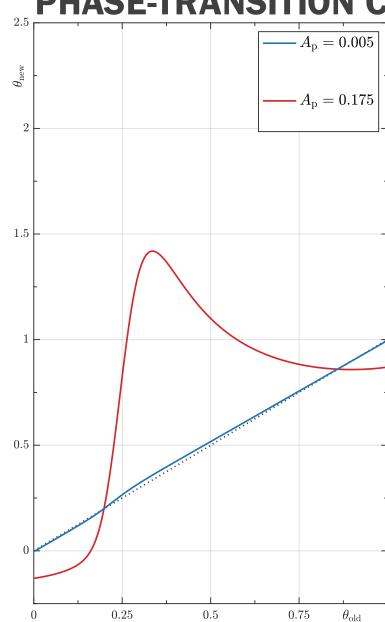




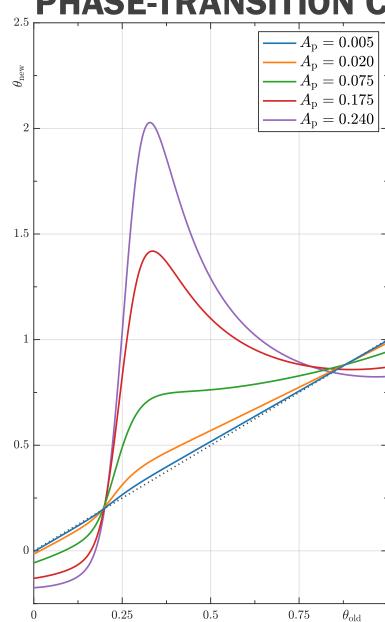
- Positive-G perturbations
 - $d_{p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations = "difference"



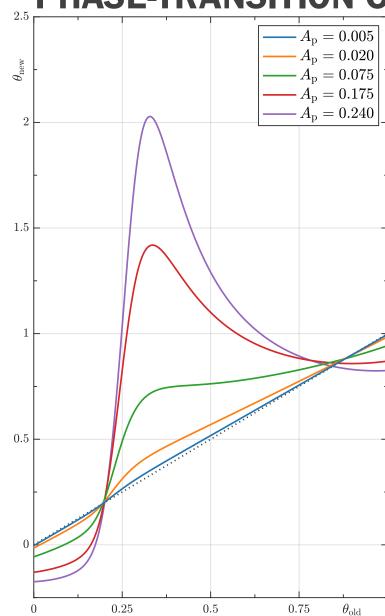
- Positive-G perturbations
 - $d_{p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations = "difference"

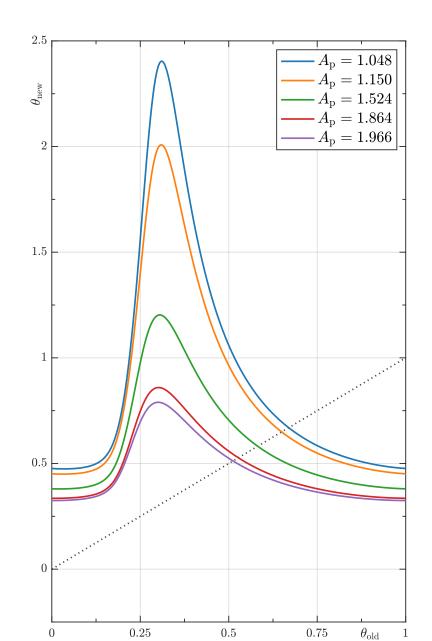


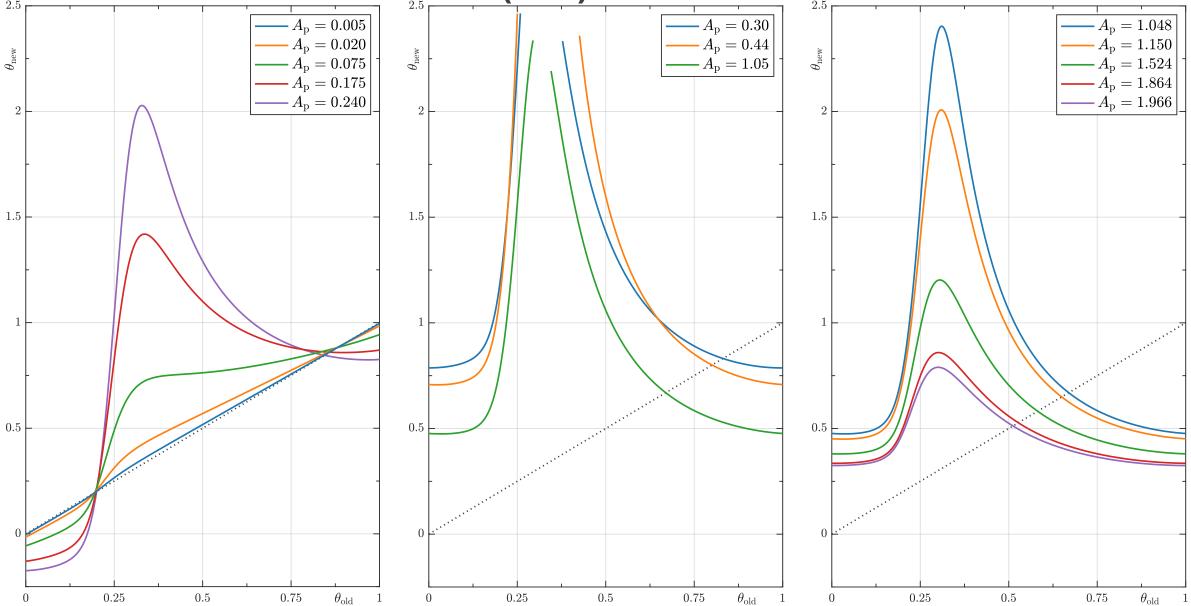
- Positive-G perturbations
 - $d_{p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations "difference"

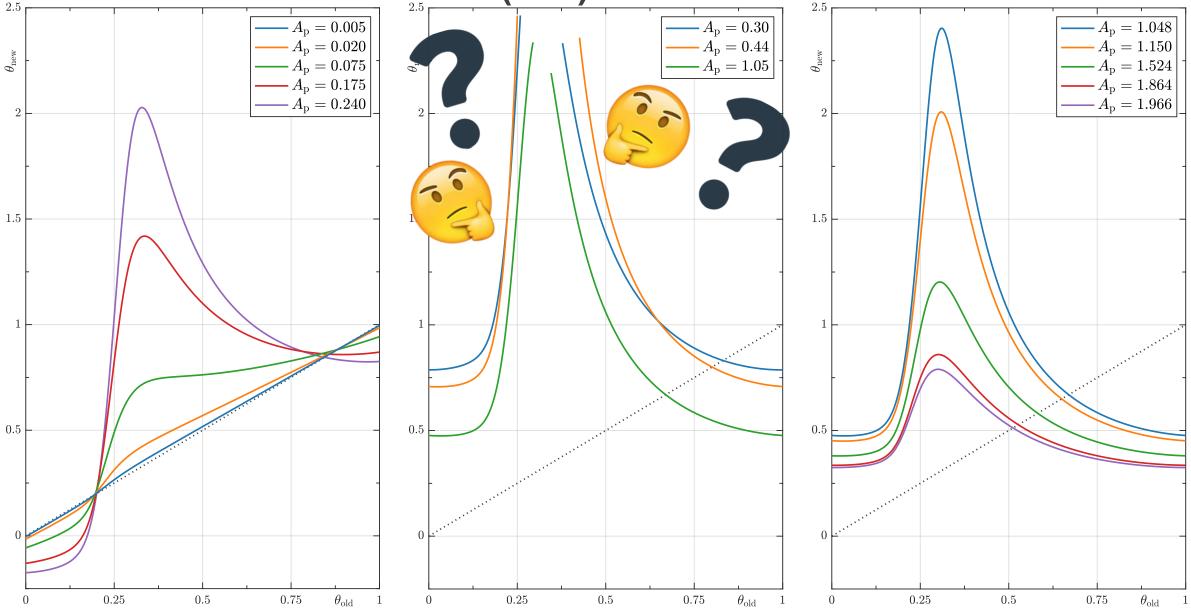


- Positive-G perturbations
 - $d_{p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations "difference"



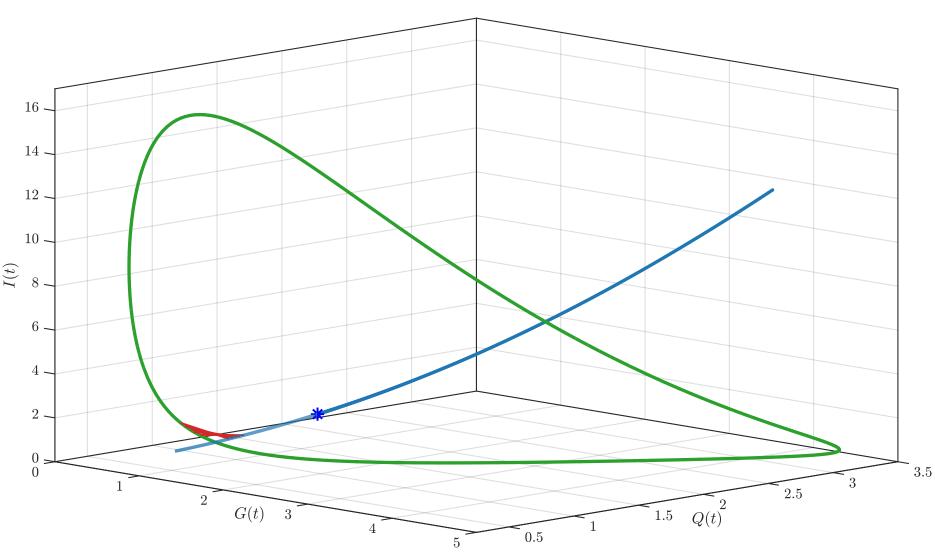






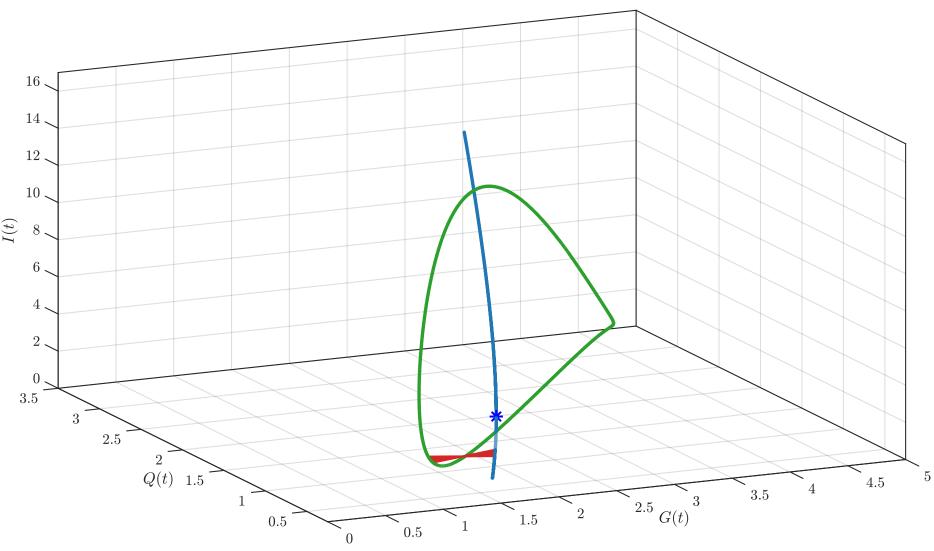
INTERSECTION WITH THE STABLE MANIFOLD

- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^s(q)$
 - Combination of $A_{\rm p}, d_{\rm p}$, and $\theta_{\rm old}.$
- Returned phase $heta_{
 m new}$ grows



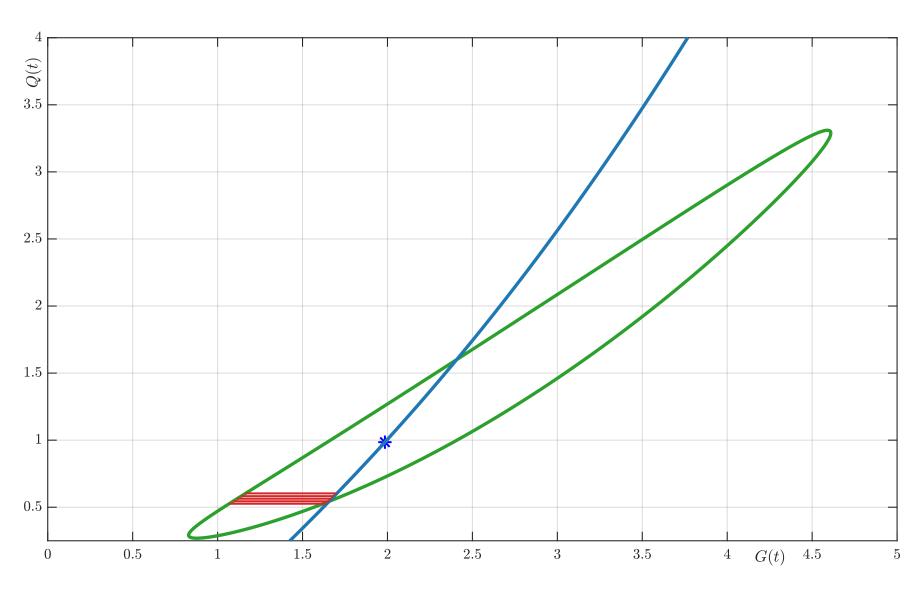
INTERSECTION WITH THE STABLE MANIFOLD

- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^s(q)$
 - Combination of $A_{\rm p}, d_{\rm p}$, and $\theta_{\rm old}.$
- Returned phase $heta_{
 m new}$ grows

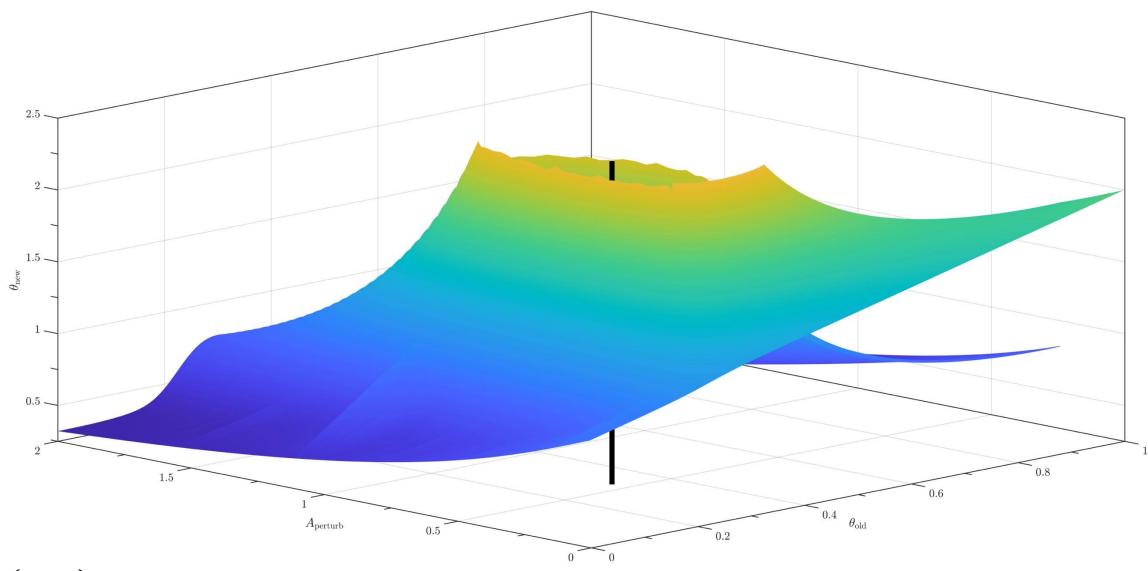


INTERSECTION WITH THE STABLE MANIFOLD

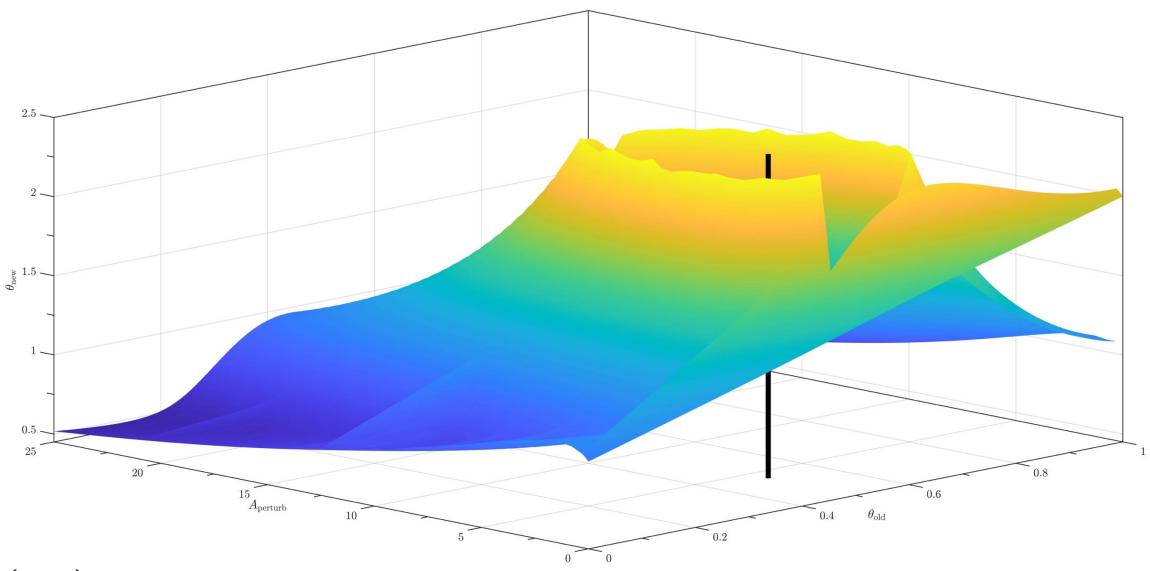
- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^s(q)$
 - Combination of $A_{\rm p}$, $d_{\rm p}$, and $\theta_{\rm old}$.
- Returned phase $heta_{
 m new}$ grows



PTC SURFACE: G-PERTURBATION



PTC SURFACES: I-PERTURBATION



CONCLUSIONS

- Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations
- Discontinuities in PTC when perturbation approaches stable manifold of spiral source
- Can technically consider perturbation in any "direction".

