PHASE-RESETTING IN THE YAMADA MODEL OF A Q-SWITCHING LASER

PHASE RESPONSE FROM AN INDUCED PERTURBATION

JACOB NGAHA, NEIL G. R. BRODERICK, AND BERND KRAUSKOPF

DODD-WALLS CENTRE SYMPOSIUM

18TH NOEMA, 2024

1

STABLE Q-SWITCHING LASERS

OPTICAL PHYSICS

Excitability in an all-fiber laser with a saturable absorber section

ROBERT OTUPIRI,^{1,*} ^(D) BRUNO GARBIN,² NEIL G. R. BRODERICK,¹ AND BERND KRAUSKOPF^{3,4} ^(D)

- Optical frequency combs and optical clocks need stability
- How do they return to equilibrium when perturbed?
- Q-switching lasers can be optical analogues to neurons
 - Optical neural networks

All optical Q-switched laser based spiking neuron

Keshia Mekemeza-Ona, Baptiste Routier and Benoît Charbonnier*

Université Grenoble-Alpes, CEA, Leti, Grenoble, France

THE YAMADA MODEL

$$\dot{G} = \gamma (A - G - G I)$$

$$\dot{Q} = \gamma (B - Q - a Q I)$$

$$\dot{I} = (G - Q - 1) I$$

- G Gain
- Q Absorption
- *I* Intensity

- Parameters
- γ Photon loss rate
- A Pump current to gain ٠
- *B* Absorption coefficient
- a Relative absorption vs. gain

Taken from J. L. A. Dubbeldam and B. Krauskopf "Self-pulsations of lasers with saturable absorber: Dynamics and bifurcations", Opt. Commun., 159 (4-6), 325 (1999).

THE YAMADA MODEL: BIFURCATION DIAGRAM

- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - *p* Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit

Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., **30** (14) (2020).

THE YAMADA MODEL: BIFURCATION DIAGRAM

- Different dynamics split by bifurcations:
 - Hopf, homoclinic, saddle
- Objects in phase space
 - o Stable equilibrium ('off state')
 - *p* Saddle with two unstable and one stable eigenvalues
 - q Spiral source
 - Attracting periodic orbit
 - Saddle periodic orbit

Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick "The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for Non Identical Decay Times of Gain and Absorber", Int. J. Bifurc. Chaos Appl. Sci. Eng., **30** (14) (2020).

THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

5

THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

- Attracting periodic orbit (green)
- "Off" state (red circle)
- Saddle (blue star)
 - 1-D stable manifold (blue)

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\mathrm{p}} = \left(\cos heta_{\mathrm{p}} \, , \sin heta_{\mathrm{p}}
 ight)$ direction
 - θ_{old} phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO
 and COCO

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = \left(\cos \theta_{\rm p} \, , \sin \theta_{\rm p} \right)$ direction
 - $heta_{old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO
 and COCO

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = \left(\cos \theta_{\rm p} \, , \sin \theta_{\rm p} \right)$ direction
 - θ_{old} phase perturbation is applied
- When does the perturbed segment return?
 - $heta_{new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO
 and COCO

- Induced perturbation
 - $A_{\rm p}$ amplitude
 - $d_{\rm p} = (\cos \theta_{\rm p}, \sin \theta_{\rm p}) {\rm direction}$
 - $heta_{old}$ phase perturbation is applied
- When does the perturbed segment return?
 - $\theta_{\rm new}$ phase perturbation returns
- Boundary value problem (BVP)
 - Numerical continuation in AUTO
 and COCO

A Continuation Approach to Computing Phase Resetting Curves

Peter Langfield^{1,2}, Bernd Krauskopf³, and Hinke M. Osinga^{3(\boxtimes)}

Phase response to arbitrary perturbations: Geometric insights and resetting surfaces

Kyoung H. Lee¹, Neil G. R. Broderick², Bernd Krauskopf¹ and Hinke M. Osinga¹

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 14, No. 3, pp. 1418–1453 © 2015 Society for Industrial and Applied Mathematics

Forward-Time and Backward-Time Isochrons and Their Interactions*

Peter Langfield^{\dagger}, Bernd Krauskopf^{\dagger}, and Hinke M. Osinga^{\dagger}

SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 9, No. 4, pp. 1201–1228 © 2010 Society for Industrial and Applied Mathematics

Continuation-based Computation of Global Isochrons*

Hinke M. Osinga[†] and Jeff Moehlis[‡]

PHASE-RESETTING: YAMADA MODEL

- Perturbations cause a phase shift ('lag') in intensity pulses.
- Phase difference $\approx \theta_{old} \theta_{new}$
- Relationship between $A_{\rm p}$, $\theta_{\rm old}$, and $\theta_{\rm new}$?

7

PHASE-RESETTING: YAMADA MODEL

- Perturbations cause a phase shift ('lag') in intensity pulses.
- Phase difference $\approx \theta_{old} \theta_{new}$
- Relationship between $A_{\rm p}$, $\theta_{\rm old}$, and $\theta_{\rm new}$?

- Positive-G perturbations
 - $d_{\rm p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations = "difference"

- Positive-G perturbations
 - $d_{\rm p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations = "difference"

- Positive-G perturbations
 - $d_{\rm p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations "difference"

PHASE-TRANSITION CURVES (PTC)

- Positive-G perturbations
 - $d_{\rm p} = (0, 0, 1)$
- Weak perturbations "reset" to the same phase
 - $\theta_{\rm p} \approx \theta_{\rm p}$
- Stronger perturbations "difference"

INTERSECTION WITH THE STABLE MANIFOLD

- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^{s}(q)$
 - Combination of $A_{\rm p}, d_{\rm p},$ and $\theta_{\rm old}.$
- Returned phase θ_{new} grows

INTERSECTION WITH THE STABLE MANIFOLD

- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^{s}(q)$
 - Combination of $A_{\rm p}, d_{\rm p}$, and $\theta_{\rm old}.$
- Returned phase θ_{new} grows

INTERSECTION WITH THE STABLE MANIFOLD

- Stable manifold of q intersects orbit W^s(q)
 - Initial point on stable manifold evolves towards q instead of "resetting".
- Each point along orbit will have some perturbation pushing it into $W^{s}(q)$
 - Combination of $A_{\rm p}, d_{\rm p},$ and $\theta_{\rm old}.$
- Returned phase θ_{new} grows

PTC SURFACE: G-PERTURBATION

 $d_{\rm p} = (1, 0, 0)$

PTC SURFACES: I-PERTURBATION

 $d_{\rm p} = (0, 0, 1)$

CONCLUSIONS

- Phase-Resetting is a powerful tool in studying the response of periodic solutions to induced perturbations
- Discontinuities in PTC when perturbation approaches stable manifold of spiral source
- Can technically consider perturbation in any "direction".

