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STABLE Q-SWITCHING LASERS

• Optical frequency combs and optical clocks need stability

• How do they return to equilibrium when perturbed?

• Q-switching lasers can be optical analogues to neurons

• Optical neural networks

2



THE YAMADA MODEL

ሶ𝐺 = 𝛾 𝐴 − 𝐺 − 𝐺 𝐼
ሶ𝑄 = 𝛾 𝐵 − 𝑄 − 𝑎 𝑄 𝐼
ሶ𝐼 = 𝐺 − 𝑄 − 1 𝐼

• 𝐺 – Gain

• 𝑄 – Absorption

• 𝐼 – Intensity 

Parameters

• 𝛾 – Photon loss rate

• 𝐴 – Pump current to gain

• 𝐵 – Absorption coefficient

• 𝑎 – Relative absorption vs. gain

Taken from J. L. A. Dubbeldam and B. Krauskopf “Self-pulsations of lasers with saturable absorber: Dynamics

and bifurcations”, Opt. Commun., 159 (4-6), 325 (1999).
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THE YAMADA MODEL: BIFURCATION DIAGRAM

• Different dynamics split by bifurcations:

• Hopf, homoclinic, saddle

• Objects in phase space

• o – Stable equilibrium (‘off state’)

• p – Saddle with two unstable and one 

stable eigenvalues

• q – Spiral source

• Attracting periodic orbit

• Saddle periodic orbit
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Taken from R. Otupiri, B. Krauskopf, N. G. R. Broderick “The Yamada Model for a Self-Pulsing Laser: Bifurcation Structure for

Non Identical Decay Times of Gain and Absorber”, Int. J. Bifurc. Chaos Appl. Sci. Eng., 30 (14) (2020).
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THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT
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𝐴 = 7.3757
𝛾 = 0.0354
𝐵 = 5.8
𝑎 = 1.8



THE YAMADA MODEL: ATTRACTING PERIODIC ORBIT

𝐴 = 7.3757
𝛾 = 0.0354
𝐵 = 5.8
𝑎 = 1.8

• Attracting periodic orbit 

(green)

• “Off” state (red circle)

• Saddle (blue star)

• 1-D stable manifold (blue)
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PHASE-RESETTING
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• Induced perturbation

• 𝐴p – amplitude 

• 𝑑p = cos 𝜃p , sin 𝜃p  – direction

• 𝜃old – phase perturbation is 

applied

• When does the perturbed segment 

return?

• 𝜃new – phase perturbation 

returns

• Boundary value problem (BVP)

• Numerical continuation in AUTO 

and COCO
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PHASE-RESETTING: YAMADA MODEL
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• Perturbations cause a phase shift (‘lag’) in intensity pulses.

• Phase difference ≈ 𝜃old − 𝜃new

• Relationship between 𝐴p, 𝜃old, and 𝜃new?
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PHASE-TRANSITION CURVES (PTC)

8

• Positive-G perturbations

• 𝑑p = 0, 0, 1

• Weak perturbations “reset” to the same phase

• 𝜃p ≈ 𝜃p 

• Stronger perturbations = ”difference” 
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INTERSECTION WITH THE STABLE MANIFOLD

10

• Stable manifold of 𝑞 

intersects orbit 𝑊𝑠 𝑞

• Initial point on stable 

manifold evolves towards 𝑞 

instead of “resetting”.

• Each point along orbit will 

have some perturbation 

pushing it into 𝑊𝑠 𝑞

• Combination of 𝐴p, 𝑑p, and 

𝜃old.

• Returned phase 𝜃new 

grows
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PTC SURFACE: G-PERTURBATION
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𝑑p = 1, 0, 0



PTC SURFACES: I-PERTURBATION
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𝑑p = 0, 0, 1



CONCLUSIONS

• Phase-Resetting is a powerful tool in 

studying the response of periodic solutions 

to induced perturbations

• Discontinuities in PTC when perturbation 

approaches stable manifold of spiral source

• Can technically consider perturbation in any 

“direction”. 
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