A Better Method for Filtered Photon Correlations

Jacob Ngaha and Howard Carmichael

University of Auckland

1 July, 2021

Introduction

➤ Single-mode Lorentzian filters have trade off between frequency cut-off and temporal response.

▶ Want a better approximation to a box filter that is effective and efficient.

The System

Method

The System

Method

Schematic

Schematic

Photon Correlations

► Collective mode operator

$$\hat{A} = \sum_{j=-N}^{N} \hat{a}_j.$$

▶ Filtered second-order correlation

$$g_{ss}^{(2)}(\tau) = \frac{\langle \hat{A}^{\dagger}(0)\hat{A}^{\dagger}\hat{A}(\tau)\hat{A}(0)\rangle_{ss}}{\langle \hat{A}^{\dagger}\hat{A}\rangle_{ss}^{2s}}.$$

The System

Method

Solving the Master Equation

▶ Density operator $\hat{\rho} = |\psi\rangle \langle \psi|$ and state (i = g, e, and n = 0, 1, 2, ...)

$$|\psi\rangle = |i=g,e\rangle_{\mathrm{Atom}} \otimes |n\rangle_{-N} \otimes \cdots |n\rangle_{j} \otimes \cdots \otimes |n\rangle_{N} \,.$$

- ▶ Makes for a LARGE system.
- For 41 modes (N=20), ≈ 20 hours to solve.
- Instead solve for operator averages

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \hat{X}(t)\rangle = \mathrm{tr}_S \left[\hat{X} \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}t} \right].$$

Operator Moment Equations

Quantum Regression

If

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{O}(t)\rangle = \boldsymbol{M}\langle\hat{O}(t)\rangle,$$

then

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\langle \hat{A}^{\dagger}(0)\hat{O}(\tau)\hat{A}(0)\rangle = \mathbf{M}\langle \hat{A}^{\dagger}(0)\hat{O}(\tau)\hat{A}(0)\rangle.$$

Filtered photon-correlations:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \langle \hat{A}^{\dagger}(0) \hat{a}_{j}^{\dagger} \hat{a}_{k}(\tau) \hat{A}(0) \rangle = -\left[2\kappa - i\left(\omega_{j} - \omega_{k}\right)\right] \langle \hat{A}^{\dagger}(0) \hat{a}_{j}^{\dagger} \hat{a}_{k}(\tau) \hat{A}(0) \rangle
- \mathcal{E}_{j}^{*} \langle \hat{A}^{\dagger}(0) \hat{\sigma}_{+} \hat{a}_{k}(\tau) \hat{A}(0) \rangle
- \mathcal{E}_{k} \langle \hat{A}^{\dagger}(0) \hat{\sigma}_{-} \hat{a}_{j}^{\dagger}(\tau) \hat{A}(0) \rangle,$$

The System

Method

Two-Level Resonance Fluorescence

Auto-Correlation: Bandwidth = γ

Auto-Correlation: Bandwidth = 10γ

Cross-Correlation: Bandwidth = γ

Cross-Correlation: Bandwidth = 10γ

Conclusion

▶ We have a quick and effective method.

Solving master equation ≈ 20 hours \Longrightarrow moment equations ≈ 1 second.

▶ Easier to add more filters for higher-order correlations.

➤ Structure of moment equations makes it easy to change source system.

Conclusion

Ngā mihi nui ki a koutou!

