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MOTIVATION - A WAY TO PROBE STABLE OSCILLATING SYSTEMS

Waipapa Taumata Rau

* Optical frequency combs, optical clocks, and * After an induced perturbation, the system will * With phase resetting, we can study how the new
optical neural networks all work with stable return back to stable oscillations. phase of the return relates to the phase of the
oscillating optical systems. initial oscillation.

THE YAMADA MODEL /\

- Yamada model for a g-switched laser with a lossy saturable * Objects in phase space: 20 L | |
absorber: - = o - stable equilibrium (not shown),

G=y(A—-G-GI) = g - unstable stationary point (diamond), |
Q=v(B—Q —all) = T - stable periodic orbit (green curve),
I=1(G—-Q—-1) = WS9(q) - one-dimensional stable manifold of 15
where: g (blue curve).
= G - gain, = y = 0.0354 - photon loss rate,
" @ - absorption, * A =7.3757 - pump current, »All initial conditions not on W*5(q) will evolve
= I - laser intensity, * B =5.8,a =18 - fixed, towards the periodic orbit T.
dimensionless parameters.

* Nine different regions of 20 | | | | | | -
dynamics [1,2], separated [ M 1 5
by different bifurcations. o * M v V |
Here we focus on a region 10 ” -
with a stable periodic H K :
solution. °r ) 0
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Time series of the unperturbed oscillations(green) and perturbed response (black) back to the original pulsations
at t~300, with a phase shift.

PHASE RESETTING AND PHASE TRANSITION CURVES (PTCs)

Three-dimensional phase portrait of the stable periodic orbit

* Perturbations cause a phase shift (‘lag’) in * For weak perturbations, 8, increases as
intensity pulses [3,4]. 0,14 iNncreases.
* Phase resetting parameters for fixed * For strong perturbations, there is a
perturbations in positive G-direction. topological change.
= A, - perturbation amplitude , - For perturbation Aj ~0.55 at 65,4 ~0.31, T |
= 0.4 - phase where perturbation is applied,  ntersects W*(q). The trajectory does not Onew
. . ’ return to I', and the phase is undefined.
" O,ew — Phase where trajectory “resets”.
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Phase portraits of the periodic orbit with a perturbation in the positive G-direction at: (left) 6,9 = 0.5 with A, = 0.3; and at (right)
Oola = 0,4, = 1.5.
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PTCs for different perturbation amplitudes in the positive G-direction: (left) before the intersection with W*5(q), and (right) after the
intersection with W*(q). The phase at which T intersection W5(q) is 6,,4~0.31 (black line).
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