

PHASE RESETTING IN THE YAMADA MODEL OF A **Q-SWITCHED LASER**

TE WHAI AO DODD-WALLS CENTRE for Photonic and Quantum Technologies

J. Ngaha^{1,2}, N. G. R. Broderick^{2,3}, and B. Krauskopf^{1,2}

¹Department of Mathematics, The University of Auckland, New Zealand ²The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand ³Department of Physics, The University of Auckland, New Zealand

MOTIVATION – A WAY TO PROBE STABLE OSCILLATING SYSTEMS

- Optical frequency combs, optical clocks, and optical neural networks all work with stable oscillating optical systems.
- After an induced perturbation, the system will return back to stable oscillations.
- With phase resetting, we can study how the new phase of the return relates to the phase of the initial oscillation.

THE YAMADA MODEL

• Yamada model for a q-switched laser with a lossy saturable absorber:

 $\dot{G} = \gamma (A - G - GI)$ $\dot{Q} = \gamma (B - Q - aQI)$ $\dot{I} = I(G - Q - 1)$

where:

• *G* – gain,

• $\gamma = 0.0354$ – photon loss rate, • A = 7.3757 – pump current,

• B = 5.8, a = 1.8 – fixed,

- Objects in phase space:
 - o stable equilibrium (not shown),
 - q unstable stationary point (diamond),
 - Γ stable periodic orbit (green curve),
 - $W^{s}(q)$ one-dimensional stable manifold of q (blue curve).

Three-dimensional phase portrait of the stable periodic orbit

- Q absorption,
- I laser intensity,
- Nine different regions of dynamics [1,2], separated by different bifurcations. Here we focus on a region with a stable periodic solution.

All initial conditions <u>not</u> on $W^{s}(q)$ will evolve towards the periodic orbit Γ .

PHASE RESETTING AND PHASE TRANSITION CURVES (PTCs)

- Perturbations cause a phase shift ('lag') in intensity pulses [3,4].
- Phase resetting parameters for fixed perturbations in positive G-direction.

- For weak perturbations, θ_{new} increases as θ_{old} increases.
- topological change.
- For perturbation $A_p^* \sim 0.55$ at $\theta_{old}^* \sim 0.31$, Γ intersects $W^{s}(q)$. The trajectory does <u>not</u> return to Γ , and the phase is undefined.

intersection with $W^{s}(q)$. The phase at which Γ intersection $W^{s}(q)$ is $\theta_{old}^{*} \sim 0.31$ (black line).

References

[1] M. Yamada, "A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semi-conductor lasers". IEEE J. Quantum Electron 29, 1330 (1993).

[2] J. L. A. Dubbeldam and B. Krauskopf. "Self-pulsations of lasers with saturable absorbers: Dynamics and bifurcations". Opt. Commun., 159, 325 (1999).

[3] P. Langfield, B. Krauskopf, and H. M. Osinga. "A continuation approach to computing phase resetting curves" in Advances in Dynamics, Optimization, and Computation", Vol 304 of SSDC (Springer International Publishing, 2020), pp. 3-30.

[4] K. H. Lee, N. G. R. Broderick, B. Krauskopf, and H. M. Osinga. "Phase response to arbitrary perturbations: Geometric insights and resetting surfaces". Discrete and Continuous Dynamical Systems-B (2024).