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Introduction

In this work we develop a theoretical approach to investigate the nature of the fluorescence emitted by a driven three-level atom
as studied by Gasparinetti et. al [1,2]. Using open systems theory to model a photon counting experiment, we employ frequency A A
filtering techniques to isolate different peaks of the fluorescence spectrum and explore the second-order photon correlations. \/i ¢ ; f) . )
The fluorescence is split and directed into two separate scanning interferometers (cavities) modelled as a cascaded system [3] with y =V \/i $ \/5 & VRt VRa
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where A, (4p) is the cavity resonance frequency detuning from the drive frequency, kg (kp) is the full linewidth of cavity a (b), AN / AN /

with respective photon annihilation and creation operators @ (b) and a (b7), ~y is the atom decay rate and
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is the atom lowering operator, with & the ratio of dipole moments for the two dipole transitions, |g) <+ |e) and |e) <> |f); the atom has ground state |g), excited state |f) and intermediate state |e), with respective
eigen-frequencies, wg, wy and we. The Hamiltonian for the driven atom is
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where € is the driving field strength (Rabi frequency), 20 = 2w; — w g 1s the detuning of the drive frequency from the two-photon transition and o = wyf, — weg, where hw;; = E; — E;.
Master equation
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with Lindblad superoperator /1(121)0 —2Ae Al — ATAe—o ATA and cascade decay operators Ja Jb \/ Y Z + /Kqa (\/ Z + /Kb b)

Filtered Photon-Photon Correlations

Tuning the ring cavities to specific transitions, we

Unfiltered Two-Photon Resonance Fluorescence

The power spectrum is the Fourier transform of the first- 100 1.0
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order correlation function: __ investigate the nature of the fluorescence from the P
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As the drive strength increases, we see dressed states S »- i 9<A2)t (7) = lim (a ( )a <t+ rjatt + 7)aft)) : Y ) - X 4)s wap /2 4wy
appear [Far Right]. More transitions are available for §% | o t—oo (at(t)a(t))(al(t +m)alt +7)) ~— T~
the atom to decay ﬂ"OT{Q t.he state | f) to state |g), giving | Ny and the conditional cross correlation where, given o =), wap /2 +w-
rise to the spectral splitting [Right]. ERE 0.4 an emission from cavity a, we ask what is the like- I
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