FILTERED PHOTON CORRELATIONS OF RESONANCE FLUORESCENCE

J. P. K. Ngaha^{1*} and H. J. Carmichael¹

¹The Dodd-Walls Centre for Photonic and Quantum Technologies,

Department of Physics,

University of Auckland, New Zealand

Fluorescence and correlation filtering is a field that has long been studied [1, 2]. In this work we develop a theoretical approach to better filter fluorescence from a resonantly driven atom. We start with a simplest example by looking at a two-level atom driven on resonance coupled as a cascaded system to a multimode cavity $(\hbar = 1)$ [3]:

$$H = H_A + H_C + H_{\rm AC} = \frac{\Omega}{2} \left(\sigma_+ + \sigma_- \right) + \sum_{j=-N}^N \Delta_j a_j^{\dagger} a_j + \frac{i}{2} \sqrt{\gamma \kappa} \left[A \sigma_+ - \sigma_- A^{\dagger} \right], \tag{1}$$

where Ω is the driving field Rabi frequency, Δ_j is the frequency of the j^{th} mode of the cavity, γ is the atomic decay rate, κ is the decay rate for each cavity mode, $\sigma_+(\sigma_-)$ is the atomic raising (lowering) operator, and $A = \sum_{j=-N}^{N} a_j$ is the total cavity annihilation operator, where a_j (a_j^{\dagger}) is the photon annihilation (creation) operator for the j^{th} mode; the Hamiltonian is written in a frame rotating at the drive frequency. The Lindblad master equation for this system, illustrated in Figure 1, is

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -i[H,\rho] + \frac{1}{2} \left(2C\rho C^{\dagger} - C^{\dagger}C\rho - \rho C^{\dagger}C \right) + \frac{\kappa}{2} \left(2A\rho A^{\dagger} - A^{\dagger}A\rho - \rho A^{\dagger}A \right), \tag{2}$$

with cascaded decay operator $C = \sqrt{\gamma}\sigma_{-} + \sqrt{\kappa}A$.

For a single cavity mode, the filtering profile is a Lorentzian, which, having long tails, possibly passes nontarget frequency photons. By allowing for N evenly spaced cavity modes either side of a central frequency, Δ_0 , each with a small bandwidth $\kappa \ll \gamma$, we can realize a better approximation to a bandpass filter. Ultimately, we aim to calculate filtered correlation functions for two-photon resonance fluorescence, as reported in the recent experiment by Gasparinetti et al. [4].

Figure 1: Model of cascaded system filtering of atomic fluorescence.

References

- [1] Peng, Z., Yang, G., Wu, Q. & Li, G. "Filtered strong quantum correlation of resoance fluorescence from a two-atom radiating system with interatomic coherence". Phys. Rev A 99, 033819 (2019).
- [2] Aspect, A., Roger, G., Reynaud, S., Dalibard, J. & Cohen-Tannoudji, C. "Time Correlations between the Two Sidebands of the Resonance Fluorescence [4] Triplet, "..., Roger, S., Lett, 45, 617620 (1980).
 [3] Carmichael, H.J. "Quantum Trajectory Theory for Cascaded Open Systems". *Phys. Rev. Lett.*, 70(15), p.2273, 1993.
 [4] S. Gasparinetti, J. C. Besse, M. Pechal, R. Buijs, C. Eichler, H. J. Carmichael, and A. Wallraff, "Two-photon resonance fluorescence of a ladder-type
- atomic system". Phys. Rev. A 100, 033802-1-8 (2019).

^{*}Contact email: jnga73@aucklanduni.ac.nz