FILTERED PHOTON CORRELATIONS OF FLUORESCENCE FROM A **DRIVEN THREE LEVEL ATOM**

J. P. K. Ngaha^{1*}, V. S. C. Canela¹ and H. J. Carmichael¹ ¹The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Auckland, New Zealand

In this work we develop a theoretical approach to investigate the nature of the fluorescence emitted by a driven three level atom as studied by Gasparinetti et. al [1, 2]. Using trajectory theory to model a photon counting experiment, we employ frequency filtering techniques to isolate different peaks of the fluorescence spectrum [Fig. 1 (Left)] and explore the second order photon correlations.

The fluorescence is split and directed into two separate scanning interferometers (cavities) modelled as a cascaded system [3] with the Hamiltonian ($\hbar = 1$)

$$\hat{H} = \hat{H}_A + \Delta_a \hat{a}^{\dagger} \hat{a} + \Delta_b \hat{b}^{\dagger} \hat{b} + \frac{i}{2} \sqrt{\frac{\gamma \kappa_a}{2}} \left(\hat{\Sigma}^{\dagger} \hat{a} - \hat{\Sigma} \hat{a}^{\dagger} \right) + \frac{i}{2} \sqrt{\frac{\gamma \kappa_b}{2}} \left(\hat{\Sigma}^{\dagger} \hat{b} - \hat{\Sigma} \hat{b}^{\dagger} \right), \tag{1}$$

where $\Delta_a(\Delta_b)$ is the cavity resonance frequency detuning from the drive frequency, $\kappa_a(\kappa_b)$ is the full linewidth of cavity a(b), $\hat{a}(\hat{b})$ and $\hat{a}^{\dagger}(\hat{b}^{\dagger})$ are the photon annihilation and creation operators for cavity a(b), γ is the atom decay rate and $\hat{\Sigma} = |g\rangle\langle e| + \xi |e\rangle\langle f|$ is the atom lowering operator with ξ the ratio of dipole moments for the two dipole transitions, $|g\rangle \leftrightarrow |e\rangle$ and $|e\rangle \leftrightarrow |f\rangle$; the atom has a ground state $|g\rangle$, an excited state $|f\rangle$ and an intermediate state $|e\rangle$ with respective eigen-frequencies, ω_g , ω_f and ω_e . The Hamiltonian for the driven atom is

$$\hat{H}_A = -\left(\frac{\alpha}{2} + \delta\right) |e\rangle \langle e| - 2\delta |f\rangle \langle f| + \frac{\Omega}{2} \left(\hat{\Sigma} + \hat{\Sigma}^{\dagger}\right), \tag{2}$$

where Ω is the driving field strength (Rabi frequency), $\delta = \omega_d - \omega_{fg}/2$ the detuning of the drive frequency from the two-photon transition and $\alpha = \omega_{fe} - \omega_{eg}$, where $\hbar \omega_{ij} = E_i - E_j$.

For a low driving strength Ω tuned to the two-photon resonance frequency $\omega_{fg}/2$, two single-photon peaks appear in the fluorescence spectrum corresponding to the cascaded decay of the atom [Fig. 1 (Left)]. The unfiltered photon correlation exhibits behaviour similar to that of a two-photon source [Fig. 1 (Right, black)]. By centering cavity a on the $|f\rangle \to |e\rangle$ transition ($\Delta_a = -|\alpha|/2$) and cavity b on the $|e\rangle \to |g\rangle$ transition $(\Delta_b = |\alpha|/2)$, we find the auto-correlation of photons emitted by cavity a and the cross-correlation of photons emitted first by cavity a and after a delay τ by cavity b. We see anti-bunching for the $|f\rangle \rightarrow |e\rangle$ autocorrelation [Fig. 1 (Right, red)] and bunching for the $|e\rangle \rightarrow |g\rangle$ cross-correlation [Fig. 1 (Right, blue)]. As we increase the bandwidth for cavity b we find that the initial peak in the cross-correlation increases and becomes sharper as the response time of the cavity decreases.

Figure 1: (Left) Fluorescence spectrum at two-photon resonance for a low drive strength (black). The filter profile for cavity a(b) is shown in red (blue) over the peak it is resonant with. (**Right**) Correlation of the unfiltered fluorescence (black), filtered fluorescence (red), and the cross-correlated filtered fluorescence (blue). The parameters for these plots are, in units of γ , $(\Omega, \delta, \xi, \alpha, \Delta_1, \kappa_1, \Delta_2, \kappa_2) = (5.0, 0.0, 1.0, -120.0, -60.0, 5.0, 60.0, 5.0).$

References

- [1] Gasparinetti, S., Pechal, M., Besse, J.C., Mondal, M., Eichler, C. and Wallraff, A. "Correlations and entanglement of microwave photons emitted in a cascade decay". *Physical Review Letters*, 119(14), p.140504, 2017. Gasparinetti, S., Buijs, R. D., Wallraff, A., et. al. "Two-photon resonance fluorescence of a weakly nonlinear artificial atom", *unpublished*.
- Carmichael, H.J. "Quantum Trajectory Theory for Cascaded Open Systems". Physical Review Letters, 70(15), p.2273, 1993

^{*}Contact email: jnga73@aucklanduni.ac.nz