## TWO-PHOTON DRESSED STATES AND FLUORESCENCE SPECTRUM OF A DRIVEN THREE-LEVEL ATOM

J. P. K. Ngaha<sup>1\*</sup>, V. S. C. Canela<sup>1</sup> and H. J. Carmichael<sup>1</sup> <sup>1</sup>The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics,

University of Auckland, New Zealand

Three-state dressing has been observed in a driven three-level artificial atom in circuit QED [?], leading to later work investigating the spectrum of the associated fluorescence [?, ?]. In this work we develop a theoretical approach to the fluorescence spectrum similar to that of Shamailov et. al. [?] but for this simpler three-level system.

We consider a three-level ladder-type model with a ground state  $|g\rangle$ , final state  $|f\rangle$ , and an intermediary state  $|e\rangle$ , with respective energies  $E_q$ ,  $E_f$ , and  $E_e$ . For an applied external drive to reach resonance with the  $|f\rangle$  state, two photons of energy  $\hbar\omega_{qf}/2=(E_f-E_q)/2$  must be absorbed. The Hamiltonian for the driven system is

$$\hat{H} = E_g |g\rangle\langle g| + E_e |e\rangle\langle e| + E_f |f\rangle\langle f| + \hbar \frac{\Omega}{2} \left( e^{-i\omega_d t} |e\rangle\langle g| + \xi e^{-i\omega_d t} |f\rangle\langle e| + \text{H.c.} \right), \tag{1}$$

where  $\omega_d$  is the driving frequency,  $\Omega$  is the driving field strength (Rabi frequency), and  $\xi$  is the ratio of dipole moments for the two dipole transitions,  $|g\rangle \leftrightarrow |e\rangle$  and  $|e\rangle \leftrightarrow |f\rangle$ . In a frame rotating at  $\omega_d$ , this Hamiltonian is represented by the time-independent matrix [?]:

$$\hat{H} = \begin{pmatrix} 0 & \frac{\Omega}{2} & 0\\ \frac{\Omega}{2} & -\left(\frac{\alpha}{2} + \delta\right) & \xi \frac{\Omega}{2}\\ 0 & \xi \frac{\Omega}{2} & -2\delta \end{pmatrix},\tag{2}$$

with  $\delta=\omega_d-\omega_{gf}/2$  the detuning of the drive frequency from the two-photon transition and  $\alpha=\omega_{ef}-\omega_{ge}$ , where  $\hbar\omega_{ij}=E_j-E_i$ . We explore the effect the drive strength and detuning have on the fluorescence spectrum, which we compute from a Lindblad master equation with decay operator  $\hat{\sigma}_{-}^{T} = |g\rangle\langle e| + \xi|e\rangle\langle f|$ . The numerically computed spectra are then interpreted by diagonalising Eqn. (2) to find the dressed states. If the system is driven at the frequency  $\omega_{ge}$  of the lower transition, we see a Mollow triplet formed, similar to that of a two-level system [Fig.1 (Left)] [?]. As the drive frequency moves closer to the two-photon transition, significant population is moved to the  $|f\rangle$  state and the central peak splits into a triplet while the two side peaks split into doublets [Fig.1 (Left and Right)]. We explain this development in the fluorescence spectrum in terms of transitions between dressed states.

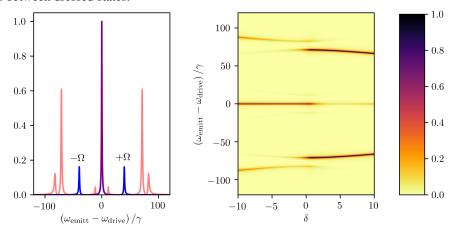



Figure 1: (Left) Fluorescence spectrum when the drive is resonant with the ground to first level transition,  $\omega_d = \omega_{qe}$ (blue), and resonant with the two-photon transition,  $\omega_d = \omega_{gf}/2$  (red). As expected, the side-peaks for the Mollow triplet occur at  $\pm\Omega$ . (**Right**) As the drive frequency approaches the two-photon resonance, the side peaks split and move due to the dressed-state shifting of the three energy levels. The parameters for both plots are  $(\Omega/\gamma, \xi/\gamma, \alpha/\gamma) = (40.0, 1.0, 120.1)$ .

## References

- Koshino, K., Terai, H., Inomata, K., Yamamoto, T., Qiu, Z., Wang, Z., and Nakamura, Y. "Observation of the Three-State Dressed States in Circuit Quantum Electrodynamics". *Physics Review Letters*, 110, 263601, 2013.
  Gasparinetti, S., Pechal, M., Besse, J.C., Mondal, M., Eichler, C. and Wallraff, A. "Correlations and entanglement of microwave photons emitted in a
- Gasparinetti, S., Buijs, R. D., Wallraff, A., et. al. "Two-photon resonance fluorescence of a weakly nonlinear artificial atom", *unpublished*.

  Shamailov, S. S., Parkins, A. S., Collett, M. J, and Carmichael, H. J. "Multi-photon blockade and dressing of the dressed states". *Optics Communica*-
- tions, 283(5):766-722, 2010.
- Mollow, B. R, "Power Spectrum of Light Scattered by Two-Level Systems", Physical Review, 188(5):1969-1975, 1969.

<sup>\*</sup>Contact email: jnga73@aucklanduni.ac.nz